Protected Vegetable Cultivation: Management Options and Economic Potential

CLARITA PAGADUAN AGANON TEOTIMO MILLO AGANON

CENTRAL LUZON STATE UNIVERSITY Science City of Muñoz, Nueva Ecija 3120 Philippines

BUREAU OF AGRICULTURAL RESEARCH Department of Agriculture Elliptical Road, Diliman, Quezon City Philippines

Protected Vegetable Cultivation: Management Options and Economic Potential

FOREWORD

In the Philippines, most of the vegetables produced by farmers come from open field cultivation. But, in the recent years, the issues on food safety and quality were brought to the fore, paving the way to alternative technology such as protected vegetable cultivation.

Protected vegetable cultivation, which has been practiced a long time ago in temperate countries, is an emerging technology in the Philippines. Vegetables are grown in a "protected" environment such as a greenhouse where environmental conditions are controlled.

Protected vegetable cultivation involves growing of vegetables by providing covering material that will protect the crop from either too much heat and rain or pest attack. The protected structure may vary from simple net house to sophisticated glass house as used in temperate countries. It also uses a growth medium which has no contaminating effect in soil or environment. Lastly, it promotes adoption of integrated pest management. As described in this book, protected vegetable cultivation uses any or a combination of these practices.

With protected vegetable cultivation, farmers can plan production cycles to overcome seasonality, water scarcity and severe infestation that are common in open field cultivation. In other words, farmers can grow high-value crops all-year round with better protection against unfavorable weather conditions, pests and diseases resulting in high quality produce.

Moreover, in the light of consumers becoming more educated and more demanding of organically-grown produce, protected vegetable cultivation provides unique opportunities in producing high quality vegetables using bio-fertilizers and botanical pesticides.

Protected vegetable cultivation is so different from open field production. It will take some time for farmers to acquire all the needed technical skills. Thus, this book, which is based on empirically tested and reliable information, attempts to respond to this concern. It will serve as an important resource material for the transfer of protected vegetable cultivation technology particularly in the country. It came at very fitting time when we are on the road of pushing modernization of the agriculture sector. For this, I commend the authors and endorse this book wholeheartedly.

NICOMEDES P. ELEAZAR

COMEDES P. ELEAZA Director, DA-BAR

Ī

PREFACE

Vegetables are the second most important crop after rice in most Southeast Asian countries. In the Philippines alone, vegetable production area is estimated at about 60,000 ha with an annual production of 252,000 tons (BAS, 2005). Supplies during on-season is characterized by market glut but scarce and disappearing during off-season months.

Scarce and discontinuous supply is attributed to biotic and abiotic factors in open field which are frequently handled inadequately by growers. The most effective approach to handling the harsh effects of these factors is through protective cultivation which has been practiced long time ago in temperate countries.

In the Philippines, protected vegetable cultivation is not widely practiced. There are as many reasons for this occurrence, but one glaring reality is the lack of adequate knowledge or information about this technology. This prompted the authors to come up with this book on "Protected Vegetable Cultivation: Management Options and Economic Potential", a book about investing and engaging in protected vegetable cultivation.

It presents some facts from previous researches and publications including the experiences of the authors on protected vegetable production particularly on the operation of structures and appropriate cultural practices that spare the crop from biotic and abiotic factors commonly causing crop failure. Information contained herein consist of reviews from works done and actual experiences under Philippine and Canada conditions while one of the authors was on sabbatical leave at Delta, British Columbia, Canada. Although, temperature-wise Canada is far cooler than the Philippines, the culture and management of crop particularly vegetables can be adapted under Philippine setting.

The book is divided into seven chapters. Chapter 1 discusses about the concepts and types of structures for protected vegetable cultivation. It also presents a brief historical account of how protected cultivation started in the Philippines including the government and non-government initiatives to promote the technology. The indispensable considerations when planning to start, or just starting to go into commercial - scale protected vegetable cultivation business are also presented in this chapter.

Chapter 2 focuses on the technical requirements in starting or operating a protected vegetable business. The technical considerations include the selection of crops and cultivars based

iii

on certain criteria; the proper siting or location for the structure; the size and orientation of structure for maximum light management and specific purpose; steps in the preparation of the house for planting; environmental control; and substrate consideration.

In Chapter 3, the choices for organic substrates intended for organic vegetable cultivation are presented. Some guidelines in organic vegetable cultivation inside protective structures are also included to satisfy the intent of protected cultivation which is safety for crops as well as consumers. Several formulations and their composition are described for specific use such as for seeds, seedlings and transplant purposes. Ingredients that are allowed for organic substrate production or formulation are discussed for reference purposes. A review of some researches done using several growing media and substrates for cucumbers. peppers. and tomato also forms part of this chapter.

The succeeding chapters present the most common crops for protected cultivation in the humid tropics and temperate climate and the specific management practices such as cultivars, planting, irrigation, fertilizer management using fertigation system or manual watering and fertilizer application as well as pest management. The crops include lettuce, broccoli, cucumber. watermelon and tomato. Specific topic on fertilizer solution preparation particularly for fertigation systems using bulk or injector systems though not very common in small scale protected cultivation is also included. Pest diagnosis as a preventive measure against pest upsurge and potential failure of the enterprise is emphasized in the second to the last chapter of the book.

Economic gain is the final indicator of any business enterprise. Starting a protected vegetable business entails cost much higher than open field system of production basically because of intensive capitalization for structure construction and equipment. The last chapter therefore, provides invaluable data on the cost and return analysis of protected vegetable production to serve as guide in deciding what type of structure and covering materials to use. It also discusses some limitations of the different protective structures particularly in the humid tropics.

While the information presented in this book may be far from complete, the authors hope that this initiative could provide the essential information useful in promoting the protected vegetable business particularly in the Philippines. May this book serve as easy reference and guide to entrepreneurs. development workers and researchers as they venture into protected agriculture.

> CLARITA P. AGANON, Ph.D. TEOTIMO M. AGANON, Ph.D

TO OUR VALUED READERS

In the recent past, the University has conducted several researches to verify and fine-tune the protected vegetable cultivation technology in the region and in other parts of the country. The technology essentially involves growing crops under protective structures to shield plants from adverse environmental conditions at different stages of growth, making it possible for a farmer to grow off-season vegetables year-round.

As an institution of higher learning engaged in R and D, it is our responsibility as well as accountability to the various stakeholders engaged in vegetables research and development and the industry sector to share results of our research endeavors. For want of ready resource material on protected vegetable production, the authors have decided to come up with this book aptly titled **Protected Vegetable Cultivation: Management Options and Economic Potential** which documents their research and work experiences as well as comprehensive readings on the subject.

The authors, researchers and editorial staff must be commended for their enormous task in coming up with this publication. However, their efforts will only become truly significant if the ideas contained in this book are used to boost off-season vegetable cultivation in the country.

VILLEJA, Ph.D. President, CLSU

ACKNOWLEDGEMENT

The authors would like to extend their most sincere appreciation to the following for without their support, this piece of work would not have been made possible:

To the Central Luzon State University officials for allowing the senior author to go on a one-year sabbatical leave purposely to write this book;

To the Bureau of Agricultural Research of the Department of Agriculture for generously providing funds for the publication of this book;

The editor and production staff for their invaluable assistance extended to the authors particularly the nitty-gritty works involved in the production of a publication like this one;

To our dear departed parents for all their sacrifices just so we can get through with our college education and for instilling in us the virtues of hardwork, perseverance and integrity which molded us into what we are today;

Our siblings, relatives and friends in the Philippines and Canada for moral support;

To Jane, Marolynd and Pete Corneliusour three precious gems and inspiration;

And to Almighty God for the gift of life and wisdom.

TABLE OF CONTENTS

FOREWORD	ii
PREFACE	iii
TO OUR VALUED READERS	v.
ACKNOWLEDGMENT	vi
CHAPTER 1	1
Concept and Types of Structures for Protected	1
Vegetable Cultivation	
Concept of Protected Cultivation	1
Protected Cultivation in the Philippines	3
Things to Consider When Starting a Protected	
Vegetable Business	4
Profitability	4
Ability of the Enterprise to Compete	4
Availability of Resources	4
Knowledge	4
Types of Protective Structures	4
Plastic House	5
Net House	5
Glass House	5
Rainshelter	6
Net tunnel	6
Categories of Protective Structures	7
Low rise	8
High rise	8
CHAPTER 2	9
Technical Requirements for Protected Cultivation	9
Selection of Vegetable Crops for Protected Cultivation	9
Criteria in the Selection of Crops for Protected	
Cultivation	9
Siting of Protective Structures	10
Environmental Control	11
Substrates for Protected Cultivation and Their Characte	ristics 12
Substrates in Soilless Culture	13
Rockwool	13
Sawdust	13
Coir	13
Perlite	13
Soilless Culture Techniques	14
Bag Culture	14
- III	

15
15
16
16
16
17
17
18

CHAPTER 3

CHAPTER 3	19
Greenhouse Organic Vegetable Cultivation	19
Commercial Blends	19
Formulating Organic Substrates or Potting Mixes	20
Ingredients Allowed in Growing Media Fabrication	21
Soil	21
Sand	21
Compost	22
Coir	23
Composted pine bark	24
Newspaper	24
Rice straw	25
Kenaf	25
Suggested Media Recipes for Protected Vegetable	
Cultivation	25
Classic soil-based mix	25
Seedling mix for styrofoam seedling flats	25
Sowing mix	25
Prick-out mix for growing seedlings to	
transplant size	26
Special potting mix	26
Classic planting mix	26
Simple soil flat mix	26
Classic formula for horticultural potting mix	26
Sterile peat-lite mix	26
Recipe for soil blocks	27
Growing mix for packs	27
Growing mixes for pots and baskets	27
Vegetable transplant recipe	27
Bedding plant recipe	27
CARE Mix	27
Aeration in Potting Mixes	29
Reported Responses of Crops to Different Substrates	30
with or without Additional Amendments	

viii

CHAPTER 4	35
Most Common Vegetables for Protected Cultivation and	35
Management Options	
Lettuce	35
Types of Lettuce	35
Recommended Varieties and Description	37
Soil/Medium Requirement	37
Planting	38
Care and Management	38
Harvesting and Sorting	38
Common Problems in Greenhouse Lettuce	39
Tomato	39
Cultural Management for Growing Tomatoes under	
Protective Structures	40
Selecting Varieties	40
Planting Pruning and Training	41
Pollination and Improving Fruit Set	41 43
Temperature Monitoring and Management	43
Relative Humidity Management	45
Irrigation	45
pH Management	46
Fertility Management	47
Analyzing Leaf Tissue	49
Nutrients Needed by Plants and Their	15
Deficiency Symptoms	49
Physiological Disorders of Tomato	53
, Radial Cracking	53
Concentric Cracking	53
Splitting	53
Catfacing	54
Blotchy Ripening or "Gray Wall"	54
Green Shoulder	54
Blossom-End Rot (BER)	54
Puffiness	55
Sunscald	56
Cucumber	56
Cultivars	56
Seeding	57
Planting	57
Growing Media	57
Temperature Requirement	57
Training and Pruning	57 59
Fertilization Disease Management	
Disease Management Insect Management	59 60
insect management	00

146	22		

Watermelon	60
Botany	61
Seeding or Production of Transplants	61
Soil Requirement and Fertilization	62
Pests of Watermelon and Their Management	64
Aphids	64
Thrips	64
Cucumber Beetle	65
Whiteflies	65
Spider Mites	66
Broccoli	66
Soil and Climatic Requirement	66
Seedling Establishment	67
Transplanting	67
Irrigation	67
Fertilizer Application	67
Insect and Disease Management	67
CHAPTER 5	69
Fertilizer and Nutrient Calculation	69
Calculating Nutrient in Fertilizer Solution	69
Solubility Limits of Fertilizers	70
Methods of Preparing Fertilizer Solution	71
Bulk Tanks	71
Injectors	72
Injector Calibration	73
CHAPTER 6	75
Pest Diagnosis in Protected Vegetable Cultivation	75
Diagnosing Insects and Mite Problems	75
Diagnostic Methods	75
Categories of Insect Pests	76
Leaf-eaters	77
Exoskeleton depositors	77
Honeydew producers	77
Droppings leavers	77
Leaf stipplers, raspers and spotters	78
Webbing producers	78
Plant tissue deformers	78
Resistance Management for Mites	79
CHAPTER 7	81
	01

Economic Potential of Protected Vegetable Cultivation	81
Economic Factors of Protected Cultivation	81

R								
8								
·							12	
8								
8								
8								
8	22	s	3	5	8	££	33	ŝ

Cost Items	82
Yield and Return from Different types of	
Protective Structures	85
Varying Types of Covering Material of a	
House Tunnel	85
Protected Cultivation in Atmosphere-Controlled	
Protective Structures: The Case of Israel-type	
Greenhouse	86
ACRONYMS	93

REFERENCES

94

LIST OF TABLES

Table 1.	Estimates of protected vegetable area	2
Table 2.	Suggested temperatures for some greenhouse vegetables	11
Table 3.	A Selection of organic fertilizers for use in	
	growing media	28
Table 4.	General guidelines for the amount of nitrogen	
	to be used	48
Table 5.	Recommended level of nutrients in tomato leaf tissue	49
Table 6.	Some of the most common watermelon cultivars	
	for protected cultivation	61
Table 7.	Suggested nitrogen and potassium fertigation	
	schedule for watermelon grown in protective structures	62
Table 8.	Fertilizer recommendation for broccoli	68
Table 9.	Solubility limits of some commercial inorganic fertilizers	570
Table 10a.	Sequence of insecticide application for mites at	
	low level of infestation	80
Table 10b.	. Sequence of insecticide application for mites at	
	high level of infestation	80
Table 11.	Gross revenues, total cost and net returns	
	from greenhouse	83
Table 12.	Estimated cost of constructing different models of	
	protective structures in the Philippines and Canada	
	tomato production 214 sq m (Florida, 1999)	84
Table 13.	Yield and income from protected broccoli cultivation	
	(3 m tall tunnels), Philippines, October 2006 to	
	February, 2007	86
Table 14.	Yield and income from protected grafted tomato	
	cultivation in 12 sites in the Philippines,	
	August 2007 to March 2008.	88
Table 15.		
	lettuce production per 100 sq m	

xi

. 88

Table 16. Cost and return of greenhouse (Israel-type) broccoli production per 100 sqm (CLSU, Nueva Ecija, Philippines) 91

Table 17. General income and expense statement on two types of protective structures in Benguet State University, La Trinidad, Benguet (January, 2008)

92

LIST OF FIGURES

	Figure 1.	A plastic house for growing different crops	5
		A net house for growing seedlings	5
	Figure 3.	Tomato grown inside a glass house	6
	Figure 4.	Rainshelter for tomato	7
	Figure 5.	Net tunnel for salad greens and leafy vegetables	7
	Figure 6a.	An Israel-type high rise greenhouse made of clear	
	0	polyethylene plastic and very fine nylon mesh	8.
	Figure 6b.	A modified Israel-type greenhouse	8
	Figure 7.	Two broad categories of soilless culture	12
	Figure 8.	A coir bag where tomatoes are grown	13
	Figure 9a.	A commercial fertilizer production project of a local	
	Ū.	government unit in Angeles City, Pampanga	20
	Figure 9b.	A commercial fertilizer production project at the	
		Central Luzon State University (CLSU)	21
	Figure 10	Iceberg – an example of a crisphead type of lettuce	36
	Figure 11	Romaine type of lettuce	36
	Figure 12	Lettuce grown inside Israel-type greenhouse at CLSU	36
•	Figure 13	A typical plant density of greenhouse-grown	
	0	a) indeterminate tomato (Canada) and b) semi-	
	1	determinate greenhouse tomato (Philippines).	42
	Figure 14	. Tomato plants pruned to a single stem and leaf pruned	
		to the height of matured fruits.	43
	Figure 15	A plastic clip to hold the plant in place and resist	
		breakage due to heavy fruit load	44
	Figure 16	Irrigation through fertigation system in a) ground and	
		b) soilless culture system.	46
	Figure 17	. Greenhouse cucumber with newly developed	
		fruits grown (inset) in low rise protective	
		structure at CLSU	59
	Figure 18	. Ground-cultured watermelon at fruiting stage inside	
		the greenhouse	63
	Figure 19	. Yellow traps in greenhouse-grown broccoli	
		(var Top Green)	68
	0	. Sample of bulk tank	71
	•	. Yellow sticky traps used in lettuce production	77
	Figure 22	. Spider mites nymphs on tomato leaf surface	79