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ABSTRACT 

An alternative procedure for estimating tl1c unknown parameters in a linear 
model is proposed in this paper. The proc:cdurc consists of splittin;: the data into 
small<:r blocks, in each of which the kast-squarcs estimHt~ of the unknown para
mt'tcrs arc computed. The proposed estimaw is the wmpunentwisc-medians of 
tlw kast·squar<'s estimates computed from the blocks. The nsymptotic di~tribu
tion of th<.' proposed cstirn~k is established. Small sample calculations indicate 
that the proposed estimate behaves very well in the prcscnc:e of LXmtaminatinn. 

Introduction 

Consider the linear model: 

Y = XB + e (1) 

where X is an n.xp matrix of full rank p, B is a px l vector of unknown 
parameters and e is an n.x 1 vector of random errors. The usual assumptions about 
the distribution of the error lerms is that they are independent and identically 
distributed F(.), where F(.) is usually taken to be the normal distribution with 
mean of 0 and some finite variance. It is well-known that when the underlying 
distribution FO is not exactly normal but rather some contaminants have been 
introduced, the performance of the least-squares estimates of 8 is drastically 
impaired. A single outlying observation can easily distort the estimate value of B if 
one uses the ordinary least-squares procedure. 

It is precisely this problem that motivates the use of altemarive estimation 
techniques in the linear model problem. Robust regression is a collection of 
techniques and procedures designed to downweight the effect of anomalous data 
points on the estimated coefficients. Such procedures are effective alternative 
methods that somehow dampen the effect of corrupt observations. 

Among the alternative procedures suggested in the literature are 
the M estimates of Huber ( 1973), the L estimates of Koenker and Bassett ( 1978) 
and th e R estimatesofAdichie(l967),Sen(l968), Jureckova (1971)andMaritz 
(1979). 
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With the exception of Sen's ( 1968) and Maritz' ( 1979) estimates, all of the 
above procedures involved intricate mathematics which, perhaps, explains why 
public acceptance of these procedures have been slow. 

If simplicity and tractability are set as criteria for robust regression, Sen's 
( 1968) and Maritz' ( 1979) prucedurcs certainly deserve .:arefu! attention. ln model 
(1), let p = 2, so that 

Yi = a + bxi + Ei , i = I, 2, ... , n 

Sen's ( 1968) estimate of b is: 

b• = median 

i <i 

while Maritz ( 1979) estimate of a is: 

median 
R 

(2) 

(3) 

where R is the set of ordered pairs (i, j) chosen from (1 ,2, ... , n) having no 
components in common. 

It is then desired to extend (2) and (3) in the multiparameter case i.e. p ~ 
3. It is of course easy to generalize (2) by simply computing all 
possible (n) least-squares estimates of {3 in (1) and then tabng the median 

71 
component wise. However, this would require a tremendous amount of computing 
even with today's standards e.g. if n = 100, p =' I 0 then approximately I. 73 x 
1013 least .. squares computations are required. 

This paper. then, concentrates on the extension of (3) in the multiparameter 
case. 

Fommlation 

Assume that in model (1), the errors Ei are iid F(.) where F(.) belongs to 
the class of all absolutely continuous functions symmetric about zero: 

Consider: 

where X 1 is a kxp matrix chosen randomly .from X. k < n and k ~ p. In other 
words, randomly split the X matri.x in m disjoint blocks each of size kxp. Do 
the same for the Y vector and call the resulting Y vector as Yr Since the errors 
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are synunetrically distributed about zero, it follows that 

Q1 - ~ for J = 1.2 •... , m 

are componentwise symmetrically distributed about zero. 

Consider 

T(Ql) ;;; 

= 

~ sgn (Q1 - 0) 
J 

~ sgn (qlJ -·- {J1) 
J 

~ sgn (q21 -P,) 
J • -

~ sgn (qpi -- Pp) 
J 

where qiJ is the ith component of Ql' and: 

sgn (u) = 1, if u > 0 

- -1, otherwise. 
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(5) 

It follows that the components of (5) are each symmetrically distributed about zero 
under the true value of {3. An estimate of the rth component of {J is obtained by: 

where: 

{3, • ] 

~~l ;nf { ~' ' 1 ogn(q,1 -~,) < O)} 
~~> ~ sup{~' ' 7 ogn(q,r~,) > 0)} 

{6) 

r = I .2, .. . , p. It is easy to verify that the solutions to ( 6) for r = I, 2, .. . , p when 
written in vector form is given by: 

(7) 
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where (3 1, {32 . ..13m are tile l e;.~st-sq uares estimates of {3 computed fro m 

11lc m blocks and the median is taken compoucn twisc. 

Asymptotic Theory 

Let X; be a sequence of independent p-dimensional random variable~. 

Let X;; denote the jth component of /Y;. It is as~umed that the dist ribution 
of Xi. l1as a positive density at the origin. Let x = (x~ . . ;-; ... . , Xp). where Xj 
denoles the median of the jth compo nents of x 1,x 2 •.. . ,x11 • The usual population 

median ~ = (t1 , b- ... , ~p). is assumed to be at ~ = (0. 0 . . ... O)'. The 

asymptotic distribution for ];trgc 11 is given as follows : Let z
1 

= (.:-;
1 

• .. .. ::
1
, ), be 

!;iVen by: 

0, otherwise ,j = l, ... ,p. 

Let F;f and h denote the cdf and pdf respectively of x if and for h = 
\b1, h-:. ..... np). let [;(b)=Ui t (b 1) . ... !ip(bp)) 

Lcl n; (b) = (viik) given by 

Clearly then, 

E (Z;j) = l - F;; (x;/Vn) 

cov (L;) = n (x/vn) 

It follows that 

Vn X ~ b iff Sn ~ - e ,.,., 

where !_ ; (1, l , . ... , l) and~ means componentwise ineql411ity . 
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n 
Now, E(n!., - Sn) = ~ Fi (x!vn) 

£ Fj{O) + (1/n) (b*[;(Q) + £(n'1') 
1 "' 

where a*b = (a 1 b1, ... , aphp). and Q denotes the p dimensional null vector. 

£ ~; (c!vn- ) 
1 

Q rL; (0) 
I -

To derive the asymptotic distribution of ; we make the foiiuwing 
assumptions as n--'K><> : 

Assumption 1. 

Assumption 2. 

Assumption 3. 

ll 

~ fi (Q) -+ f > Q, ·where f is finite. 
n 1 

l n 
~ ni {Q)-+- n ' a non-null matrix 

n i= 1 

n 
e) -• 0, the zero vector. 

2 

By the multivariate central limit theorem (Rao ( 1965), Exercise 2 ( 4. 7) ) we 
have: 

S11 - E(S,) L 
--- ---- · _,. N(fl, n) 

Vn 
under Assumption 2. 

Now: 

P(..;;i x ~c) fl ·-1 
P(X ~ ----- e) 

fl 2 ""-~ 

S, -- E(S11 ) 

p (------- · ~ 
..;n 

ll 
n+ 1 I ...., 1 n 
·-- + - "- Fi(O)+- ~c *ft) 
2.Jfl -/11 1 - ll 1 

( 11) 
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from Assumption 2 and 3. From expressions (8) and (9), it follows that: 

Theorem 1 ~ ';' $ J" is asymptotically nonnal with mean Q and covariance 
Q, under Assumptions 1, 2 and 3. 

R emark 1 The asymptotk disti'ibution of the sample median in the iid case 
is a special case of this result when P"' ! . Sec Lehmann ( !983). 

Remark 2 Mood ( 1941) derived the asymptotic joint distribution of the sam· 
pie medians from ~ multivariate population F. The result in that paper can also be 
seen as a special case of the above theorem by letting 

Now consider, { 5i} the sequence ofleast:;_squares estimates computed accord
ing to the scheme in Section 2. As before. let bif denote the j th component of the 
ith least·squarcs estimate i = 1, 2 , .. . , m, j = 1, 2 , ... , p, n = m, k. Let Hii and 
hij denote the cdf and pdf of bij respectively. Let 

the joint cdf of any two components of ~r In Theorem 1. replace each Fi by Hh 
each fi by hi and so on wherever necessary. We obtain the following main result 
on the asymptotic distribution of the median estimate {3* given by (6). 

Corollary 1 ..jiil tJ"* his symptotically normal with mean (3 and covariance 
Q under Assumptions I , 1 , and 3 where: 

I . I m 
h :;:: 1m- L h; (Q) (12) 

nt-'~«> m 1 

m 
.Q= lim L Q; (Q) (13) 

m~ 
m 1 

where .Qi ( 0) is defined by equations 8 and 9 replacing F;1 by H11 and 
F1f k by H;_/i: and so on. 

Of special interest is the case p = 2, which includes among others, the 
estimate a • ofMaritz ( 1979). To this end let k = 2 and 

= density of Xtf.j - Xjei for some (i, j) in R 

= density of e; - c1 for some (i, /) in R 
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Marginally, we obtain the following corollary: 

Corollary 2 v'ni (a* - a) ~ N(O, 
1 

) 
4 h2 (0) 

Vm(b*- b) - -+N(O, ______ I __ ) 

4 g2 (O) 

where 

1: l x;- x;Jh;; (0) 
h (0) lim R 

m 4~--------m----------

g (0) lim 
rn ~ oo 

with 

f2 (u)du<cc 

As in ordinary least-squares. different objectives may yield different choice 
of blocking R. Thus, in ordinary least-squares, when the objective is to minimize 
the variance of the least -squares estimate of a, then the x 's are chosen so that 
.X = 0. On the other hand, if the objective is to minimize the variance of the least-

n 
squares esrim<1tc of b, then ~ (x;- xP is made as large as possible. 

i" I 

In the above corollary, if we \Vish to minimize the var iance of b •, then we 
need tu maximize l":lx;- x;lfm. This can be achieved if large values of x arc 

R 
paired with small values of x. It is not clear how the blocking should be done to 
minimize the variance of a*. 

In the case that the x 's are randomly generated independe nt of the e's, 
then the blocking technique used for estimating b will yield an optimal blocking 
st ruct ure for estimating a as well in the sense of minimizing the asymptotic 
variances. 

Monte Carlo 

We performed a simple Monte CJrlo experiment to detennine the perfor
mance of the proposed estimate for finite sample sizes relative to the usual least
squares estimates of (3 in model (I). 

We took as our model the (.:ase p=3 given by: 

y . == 2.5 + 3.5x1.- 95x2. +E. 
I J 1 I 
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The sample sizes are n= 18 and n=30 to represent small and large sample sizes 
respectively. The values of x 1; and x 1; are independently generated from a 
uniform distribution on the interval ( - 20,20] _ The distribution of the errors, <:i, 
is given: 

F = ( I - a:) N(O.I) + a N(O.M) _ O<D< l 

that is, a cont aminated nom1al dbuibution contaminated by a normal distribut ion 
with a sta11dard deviation of 8. The proportions of c~mtaminarion, a, are 
0.00. OJ) I , 0.05 and 0.1 0. 

!loth the ]east-squares estimates of i3 and the median eslimatcs of (J 
are computed over 1,000 repl icat ions. Wr.: then estimated the mean-squared crro1s 
(MSE) nf both these estimates <Jnd compared them. The results arc given in Tahlc ] _ 

In this tahle. the ratios given are: 

R<Jtio: 
MSE Estimate for tlJe Least -Sq uares 

MSE Estimate for the -lvleJi~;l-

over 1,000 repllcat.ions. Hence , a ratio less than I indicates that the least-squares 
estimate performed better than the lllCdian est im ate, otherwise the reverse is true. 

Table I . MSE ratios of the least -squares relative to the mcdi<Jn estimates 

Proportion of Contamination 

0.00 
0.01 
0.05 
0.10 

NJ 

0.6148 
1.392 1 
1.4!25 
1.2767 

Sample Size 
30 

0.43 74 
1.2452 
!.3324 
1.2037 

Notice that even with the slightest amount of contamination. namely just 
I%. the median estimate already out pe rforms the least-squares. 

Conclusion 

The propos;;-d estimates of mul t iple regression coefficients <Jre very &implc to 
calcul<Jtc and are therefore fai rl y attractive to the r!Veragc user o f sta tistics. The 
cstim~tes provide good protection for the effect of corrupt observations in the 
data. 

Finally , we migh t ment ion t hr!t simple non-p<Jiametri<; res ts of hypotheses 
can be made utilizing the given procedures. 
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