ON THE LEXICOGRAPHIC OF THE n-PERMUTATIONS

Severino V. Gervacio
MSU-Migan Institute of Technology
Tibanga, Iligan City

Abstract

We call $\pi=x_{1} x_{2} \ldots x_{n}$ an n-permutation of the elements $1,2, \ldots, n$ if each x_{1} is a positive integer not exceeding n and $x_{i} \neq x_{j}$ for all $i \neq j$. We refer to x_{1} as the ith element of the permutation π. If $\pi_{1}=x_{1} x_{2} \ldots x_{n}$ and $\pi_{2}=$ $y_{1} y_{2} \ldots y_{n}$ are two n-permutations, we say that π_{1} precedes π_{2} if there exists a positive interger k not exceeding n such that $x_{i}=y_{i}$ for all $i<k$ and $x_{k}<y_{k}$. If no such integer k exists, then $x_{i}=y_{i}$ for all iand we say that the permutations are equal. We shall write $\pi_{1}<\pi_{2}$ if π_{1} precedes π_{2}, and $\pi_{1}=\pi_{2}$ if they are equal. We know that there are exactly n ! permutations on $1,2, \ldots$., n. It is easy to see that for any two n-permutations π_{1} and π_{2}, exactly one of the following holds: $\pi_{1}=\pi_{2}, \pi_{1}<\pi_{2}, \pi_{2}<\pi_{1}$. Furthermore, if $\pi_{1}<\pi_{2}$ and $\pi_{2}<\pi_{3}$ then $\pi_{1}<\pi_{3}$. Thus, $<$ is a linear ordering on the n-permutations. This is called the lexicographic ordering.

If exactly r distinct permutations precede π, we say that π has rank $\mathrm{r}+1$. Thus, $123 \ldots \mathrm{n}$ has rank n and $\mathrm{n} \ldots 321$ has rank n ! We shall denote by rank (π) the rank of π.

Three main problems are dealt with in this paper. The first is the computation of the rank of a given permutation, the second is the determination of the permutation with a given rank, and the third is the lexicographic enumeration of n-permutations.

The Rank of an n-Permutation.

For convenience, let us define the index of the permutation $\pi=x_{1} x_{2} \ldots x_{n}$ to be ind $(\pi)=\widetilde{x}_{1} \widetilde{x}_{2} \ldots \widetilde{x}_{n}$, where \widetilde{x}_{i} is the number of subscripts $j>i$ such that x_{j} $<x_{i}$. Clearly, $0 \leqslant \widetilde{x}_{1} \leqslant n-i$ for each i. In particular, $\widetilde{x}_{n}=0$. As an example, if $\pi=$ 316425, then $\operatorname{ind}(\pi)=203100$. It should be remarked that if $n>9$, then we should use the notation $\pi=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\operatorname{ind}(\pi)=\left(\widetilde{x}_{1}, \widetilde{x}_{2}, \ldots, \widetilde{x}_{n}\right)$ to avoid any confusion.

Theorem 2.1. If $\pi=x_{1} x_{2} \ldots x_{2}$ is an n-permutation, then

$$
\operatorname{rank}(\pi)=1+{ }_{k-1}^{n-1} \tilde{x}_{k}(n-k)!
$$

Proof: Let $\pi^{\prime}=y_{1} y_{2} \ldots y_{n}$ be any permutation which precedes π. Let us count the total number of such permutations π^{\prime} as follows. Let k be a positive integer less than n. Set $y_{1}=x_{1}$ for all $i<k$. Choose any $j>i$ such that $x_{j}<x_{k}$ and set $y_{k}=x_{j}$. Note that we have a total of \widetilde{x}_{k} choices here. For the last $n-k$ elements of π^{\prime}, we choose any of the ($n-k$)-permutations of $[1,2, \ldots . n] /\left[y_{1}, y_{2} \ldots\right.$, $\left.y_{k}\right]$. Hence, the number of such permutations π^{\prime} we can construct corresponding to k is $\widetilde{x}_{k}(n-k)$!. Clearly, two distinct values of k will give us non-overlapping sets of permutations that precede π. The theorem then follows.

Theorem 1 solves our first problem. As an illustration, if $k=316425$, then $\operatorname{ind}(\pi)=203100$ and $\operatorname{rank}(\pi)=1+2(5!)+0(4!)+3(3!)+1(2!)+0(1!)=261$. Thus, the permutation 316425 is the 261 st permutation in the lexicographic list of all 6-permutations.

Finding the permutation with a given rank.

Lemma 3.1. Distinct n-pernutations have distinct indices

Proof: Let $\pi_{1}=x_{1} x_{2} \ldots x_{n}$ and $\pi_{2}=y_{1} y_{2} \ldots y_{n}$ be distinct n-permuta. tions. Without loss of generality, we may assume $\pi_{1}<\pi_{2}$. Then there exists a positive integer $\mathrm{k}<\mathrm{n}$ such that $\mathrm{x}_{\mathrm{k}}<\mathrm{y}_{\mathrm{k}}$ and $\mathrm{x}_{1}=\mathrm{y}_{1}$ for all $\mathrm{i}<\mathrm{k}$. Lei $\mathrm{j}>\mathrm{k}$ and $\mathrm{x}_{\mathrm{j}}<$ x_{k}. Then $x_{j}=y_{t}$ for some $t>k$ and $y_{t}<y_{k}$. It follows that $\tilde{y}_{k} \geqslant \widetilde{x}_{k}$. But in addition, $x_{k}=y_{s}$ for some $s>k$ and $y_{s}<y_{k}$. Therefore $\widetilde{y}_{k}>\widetilde{x}_{k}$ and hence ind $\left(\pi_{1}\right)$ $\neq \operatorname{ind}\left(\pi_{2}\right)$ since they differ in their kth element.

Corollary. Let $a_{1} a_{2} \ldots a_{n}$ be an ordered n-tuple of integers such that 0 $\leqslant a_{1} \leqslant n-i$ for each i. Then there exisls a unique $n-$ pennutation π with ind $(\pi)=$ $a_{1} a_{2} \ldots a_{n}$.

Proof: Consider the set P_{n} of all ordered n-tuples of integers $c_{1} c_{2} \ldots c_{n}$ where $0 \leqslant a_{1} \leqslant n-i$ for each i. Note that P_{n} has exactly n ! elements. By the theorem, the mapping ind from the set of all permutations of $1,2, \ldots, n$ to P_{n} is one-to-one. It follows that ind is also an onto map since there are exactly n ! n-permutations. Hence, any element $a_{1} a_{2} \ldots a_{n}$ of P_{n} is the index of a unique permutation π.

Although the above argument proves the existence of a unique permutation with a given index, it does not show us a way of constructing the permutation. We shall now develop an algorithm for constructing the permutation with a given index.

Let $a_{1} a_{2} \ldots a_{n}$ be a given index. Let $C_{i}=c_{1}^{1} c_{2}^{1} \ldots c_{n}^{1}=123 \ldots n$. Since $0 \leqslant a_{i} \leqslant n-i$, then $i \leqslant a_{i}+i \leqslant n$ and hence $1 \leqslant a_{i}+1 \leqslant n-i+l$ for each i. Define x_{1} to be the $\left(a_{i}+1\right)$ th element of C_{i} and let $C_{2}=c_{2}^{2} c_{2}^{2} \ldots c_{n-1}^{2}$ be the ($n-1$)-tuple obtained from C_{1} by striking out the element x_{1}, the $\left(a_{1}+1\right)$ th element. Recursively, we define $C_{i}=c_{1}^{1} c_{2}^{1} \ldots c_{n-1+2}^{1}$ to be the ordered $(n-i+1)$-tuple obtained from C_{i-1} by striking X_{i-1} out. Since the elements of C_{i} form an increasing
sequence, it is clear that the elements of C_{i} also form an increasing sequence, for each i. Let x_{1} be the $\left(\mathrm{a}_{\mathrm{i}}+1\right)$ th element of C_{i} and form the permutation $\pi=$ $x_{1} x_{2} \ldots x_{n}$. We claim that $\operatorname{ind}(\pi)=a_{1} a_{2} \ldots a_{n}$. Now, since x_{i} is the $\left(a_{i}+1\right)$ th element of C_{i} and the element of C_{i} form a non-decreasing sequence, it follows from the construction of π that the number of elements x_{j} of π such that $\mathrm{j}>\mathrm{i}$ and $x_{j}>x_{i}$ is equal to the number of elements of C_{1} to the left of the $\left(a_{1}+1\right)$ th element. Hence, $\widetilde{x}_{i}=a_{i}$ and ind $(\pi)=a_{1} a_{2} \ldots a_{n}$.

Lemma 3.2. Every positive integer r not exceeding n ! can be expressed uniquely in the form $r=1+\sum_{i=1}^{n-1}, a_{i}(n-i)!$, where $0 \leqslant a_{i} \leqslant n-i$ for each i.

Proof: Let $1 \leqslant r \leqslant n$!. Then r is the rank of a unique n-permutation $\pi=$ $x_{1} x_{2} \ldots x_{n}$. Let $\operatorname{ind}(\pi)=a_{1} a_{2} \ldots a_{n}$. Then $0 \leqslant a_{i} \leqslant n-i$ for each i and by Theorem 2.1,r $=1+\sum_{i=1}^{n-1} a_{i}(n-i)!$. To prove the unic|uess of this representation, let us suppose $r=1+\sum_{i=1}^{n-1} b_{i}(n-i)$!, where $0 \leqslant b_{i} \leqslant n-i$ for each i. Let $b_{n}=0$. By the corollary to Lemma 3.1 , there exists a unique $n-$ permutation π^{\prime} with ind $\left(\pi^{\prime}\right)=$ $b_{1} b_{2} \ldots b_{n}$. Bur rank $\left(\pi^{\prime}\right)=r=\operatorname{rank}(\pi)$. It follows that $\pi=\pi^{\prime}$ since there is a unique permutation with a given rank. From Lemma 3.1, it follows that $b_{i}=a_{i}$ for each i.

Theorem 3.1. Let r be an integer such that $l \leqslant r \leqslant n!$. Let $r_{o}=r-1$ and for each $i<n$, let q_{i} and r_{i} be the quotient and remainder, respectively, obtained by disiding $(n-i)!$ by r_{i-1}. Then $r=1+\sum_{i=1}^{n-1} q_{i}(n-i)!$ and $0 \leqslant q_{i} \leqslant n-i$ for each i.

Prenf: Consider the equation $r_{1-2}=q_{i}(n-i)!+r_{i}$. Suppose that $q_{i}>n-i$. Then $\left.q_{i} \leqslant n-i+1\right)$. This implics that $r_{i-2} \leqslant(n-1)!(n-i+1)+r_{1}=(n-i+1)!+r_{i} \geqslant$ $(n-i+1)$! This is a contradiction since $r_{i-1}<(n-1+1)$!.

Now, if we add all the equations $r_{i-1}=q_{i}(n-i)!+r_{i}$, where $i=1,2, \ldots$. $\mathrm{n}-1$, then we get

$$
r_{0}+\sum_{i=1}^{n-2} r_{i}=\sum_{i=1}^{n-1} q_{i}(n-i)!+\sum_{i=1}^{n-1} r_{i}
$$

which implies that

$$
r_{0}=\sum_{i=1}^{n-1} q_{i}(n-1)!+r_{n-1}
$$

But $r_{n-1}=0$ since it is the remainder obtained by dividing r_{n-2} by 1!. The theorem then follows since $r_{0}=r-1$.

Corollary. Let $l \leqslant r \leqslant n!$ and let $q_{1}, q_{2} \ldots, q_{n-1}$ be the integers defined in the theorem. Then $q_{1} q_{2} \ldots q_{n}$, where $q_{n}=0$), is the index of the permutation π whose rank is r.

Example. Find the 6 -permutation with rank $\mathrm{r}=15$. First we determine the quotients q_{i}.

$$
\begin{aligned}
& 14=0(5!)+14===> \\
& 14=0(4!)+14===> \\
& q_{1}=0, \\
& 14=2(3!)+0=0, \\
& 2=1(2!)+0==> \\
& 0=0(1!)+00==> \\
& \mathrm{q}_{3}=2, \\
& \text { and set } \mathrm{q}_{4}=1, \\
& \mathrm{q}_{6}=0,
\end{aligned}
$$

Therefore ind $(\pi)=002100$. Let C_{1} 123456. Using our algorithm, we have

$$
\begin{aligned}
& 0+1=1===>x_{1}=1 \text { st element of } C_{1}=1===>C_{2}=23456 \\
& 0+1=1===>x_{2}=1 \text { st clement of } C_{2}=2===>C_{3}=3457 \\
& 0+1=3===>x_{3}=3 \text { rd element of } C_{3}=5===>C_{5}=346 \\
& 1+1=2===>x_{4}=2 \text { nd element of } C_{4}=4===>C_{3}=36 \\
& 0+1=1===>x_{5}=1 \text { st element of } C_{5}=3==>C_{6}=6 \\
& 0+1=1===>x_{6}=1 \text { st element of } C_{6}=6
\end{aligned}
$$

Hence $\pi=125436$ is the 6 -permutation with rank 15 .
It should be observed that the computation of the quotients q_{i} is not easy if n is large. A much easier method of computation is possible. Suppose $1 \leqslant r \leqslant n$!. Let $r_{o}=$ $r-1$ and let the results of the series of divisions be the following.

$$
\begin{array}{ll}
r_{o}=q_{1}(n-1)!+r_{1} & 0 \leqslant r_{1} H \\
r_{o}=q_{2}(n-1)!+r_{1} & 0 \leqslant r_{1}<(n-1)! \\
r_{1}=q_{2}(n-2)!+r_{2} & 0 \leqslant r_{2}<(n-2)! \\
r_{2}=q_{3}(n-3)!+r_{3} & 0 \leqslant r_{3}<(n-3)! \\
& \\
r_{n-2}=q_{n-1}(1!)+r_{n-1} & 0 \leqslant r_{n-1}<1!
\end{array}
$$

We shall use the fact that for any real number x and any positive integer $n,[x / n]=$ [$[x] / n]$, where $[x]$ denotes the greatest integer not exceeding x (This is not so difficult to prove.).

Consider the following sequence of divisions.

$$
\begin{array}{ll}
\mathrm{r}_{\mathrm{o}}=\mathrm{q}_{1}^{\prime}(1)+\mathrm{r}_{1} & 0 \leqslant \mathrm{r}_{1}^{\prime}<1 \\
\mathrm{q}_{1}^{\prime}=\mathrm{q}_{2}^{\prime}(2)+\mathrm{r}_{2}^{\prime} & 0 \leqslant \mathrm{r}_{2}^{\prime}<2
\end{array}
$$

$$
\begin{array}{cl}
\mathrm{q}_{2}^{\prime}=\mathrm{q}_{3}^{\prime}(3)+\mathrm{r}_{3}^{\prime} & 0 \leqslant \mathrm{r}_{3}^{\prime}<3 \\
: & \\
\mathrm{q}_{\mathrm{n}-1}^{\prime}=\mathrm{q}_{\mathrm{n}}^{\prime}(\mathrm{n})+\mathrm{r}_{\mathrm{n}}^{\prime} & 0<\mathrm{r}_{3}^{\prime}<\mathrm{n}
\end{array}
$$

Observe that $\mathrm{q}_{1}^{\prime}=\left[\mathrm{r}_{\mathrm{o}} / 1\right], \mathrm{q}_{2}^{\prime}=\left[\mathrm{q}_{1}^{\prime} / 2\right]=\left[\mathrm{r}_{\mathrm{o}} / 2!\right], \mathrm{q}_{3}^{\prime}=\left[\mathrm{q}_{2}^{\prime} / 3\right]=\left[\mathrm{r}_{\mathrm{o}} / 3!\right], \ldots$, $q_{n-1}^{\prime}=\left[r_{0} /(n-1)!\right], q_{n}^{\prime}=\left[r_{0} / n!\right]=0$. Multiply the second equation by $1!$, the third by 2 !, and in general multiply equation $i+1$ by i !. If all the resulting equations are added, we get $\mathrm{q}_{1}^{\prime}=\mathrm{q}_{\mathrm{n}}^{\prime}(\mathrm{nl}]+\sum_{i=1}^{n-1} r_{n-1+1}^{\prime}(n-i)$!. But $\mathrm{q}_{1}^{\prime}=r_{o}$ and $q_{n}^{\prime}=$ 0 . Furthermore, $0 \leqslant r_{n-1+2}^{\prime}<n-i+1$. By Lemma 3.2 (uniqueness), it follows that $r_{n-i+1}^{\prime}=q_{i}$ for each $i=1,2, \ldots, n-1$.

Example. Represent 15 in the form $1+\sum_{1=1}^{n-1} q_{i}(n-1)$!, where $0 \leqslant q_{1}$ $\leqslant \mathrm{n}-\mathrm{i}$ for all i .

We have $r_{o}=14$. Then we perform the following divisions.

$$
\begin{aligned}
14 / 2 & =7, & & \text { remainder } 0,
\end{aligned} q_{5}=0
$$

So we have $15=1+0(5!)+0(4!)+2(3!)+1(2!)+0(1!)$.

4. Lexicographic Enumeration of $\mathbf{n}-$ Permutations.

There are five methods of enumerating n-permutations discused in [1], namely, the Tompkins-Paige method, the derangement method of M. Hall, the transposition method of M.B. Wells, the adjacent mark method of S. M. Johnson, and the lexicographic method of D. N. Lehmer. Of these methods, only Lehmer's method lists the n-permutations in lexicographic order. Essentially the method consists of listing the n-permutations starting from the one with rank 1 , i.e., the permutation 123...n, and then incrementing the rank by one until the last permutation $n \ldots 321$ is reached. For each given rank, the permutation is determined by means of a neat algorithm but the whole process takes time to complete because of the need to compute for the index of the permutation. Here we shall find a way to accomplishing the same task without the need for computing indices.

Let π_{1} and π_{2} be n-permutations. We say that π_{2} is the successor of π_{1} if $\pi_{1}<\pi_{2}$ and there exists no n-permutation π such that $\pi_{1}<\pi<\pi_{2}$. Let $\pi_{2}=$ $y_{1} y_{2} \ldots y_{n}$ be the successor of $\pi_{1}=x_{1} x_{2} \ldots x_{n}$. Then by definition, there exists
a positive integer $\mathrm{k}<\mathrm{n}$ such that $\mathrm{x}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}}$ for all $\mathrm{i}<\mathrm{k}$ and $\mathrm{x}_{\mathrm{k}}<\mathrm{y}_{\mathrm{k}}$. Let $\pi=\mathrm{z}_{1} \mathrm{z}_{2} \ldots$ z_{n} be any n -permutation such that $\pi_{1}<\pi$. Then there exists a positive integer $\mathrm{k}^{\prime}<$ n such that $\mathrm{x}_{\mathrm{i}}=\mathrm{z}_{\mathrm{i}}$ for all $\mathrm{i}<\mathrm{k}^{\prime}$ and $\mathrm{x}_{\mathrm{k}^{\prime}}<\mathrm{z}_{\mathrm{k}^{\prime}}$. Clearly, $\mathrm{k}^{\prime} \leqslant \mathrm{k}$. Therefore, to find the successor of an n-permutation π_{1}, we look for the n-permutation π_{2} such that corresponding elements of π_{1} and π_{2} in all positions before the kth , for the maximum possible value of k.

Lemma 4.1. Let $\pi_{2}=y_{1} y_{2} \ldots y_{n}$ be the successor of $\pi_{1}=x_{1} x_{2} \ldots x_{n}$ and let k be the positive integer satisfying $x_{i}=y_{i}$ for all $i<k$ and $x_{k}<y_{k}$. Then x_{k} $<x_{k+1}, y_{1}<y_{i+1}$ for all $i>k$ and y_{k} is equal to the minimum x_{j} satisfying $j>k$ and $x_{j}>x_{k}$.

Proof: Suppose $\mathrm{x}_{\mathrm{k}}>\mathrm{x}_{\mathrm{k}+1}$. Since $\mathrm{x}_{\mathrm{i}}=\mathrm{y}_{1}$ for all $\mathrm{i}<\mathrm{k}$ and $\mathrm{x}_{\mathrm{k}}<\mathrm{y}_{\mathrm{k}}$, it follows that $y_{k}=x_{j}$ for some $j>k+1$. Hence, $x_{k+1} x_{k+2} \ldots x_{n}$ is not monotonic decreasing. Consequently, there exists a maximum $t>$ such that $x_{t}<x_{t+1}$. Let $\pi^{\prime}=z_{1} z_{2} \ldots z_{n}$ be the permutation defined by $z_{t}=x_{t+1}, z_{t+1}=x_{t}$, and $z_{i}=x_{i}$ for all i different from t and $t+1$. Clearly, $\pi_{1}<\pi$. But this is a contradiction since $t>k$. That $y_{1} \in$ y_{i+1} for all $i>k$ is proven using a similar argument. By definition of successor, y_{k} must be equal to the minimum x_{j} such that $\mathrm{x}_{\mathrm{j}}>\mathrm{x}_{\mathrm{k}}$ and $\mathrm{j}>\mathrm{k}$.

Lemma 4.1 gives us a way of constructing the successor of any given permutation, and hence, an algorithm to enumerate all permutations in lexicographic order. We illustrate this by means of an example. Let $\pi_{1}=x_{1} x_{2} \ldots x_{n}=261354$. The largest k for which $\mathrm{x}_{\mathrm{k}}<\mathrm{x}_{\mathrm{k}+2}$ is $\mathrm{k}=4$ corresponding to the element 3 . The minimum element to the right of 3 which is greater than 3 is 4 . Therefore, the successor of π_{1} is $k_{2}=261435$.

A computer program in PASCAL that lists in lexicographic order all n-permutations is given below.

Program Permutation;
label done, show;
type values $=0 . .50$;
var $\quad \mathrm{i}, \mathrm{j}, \mathrm{k}$, order: values;
perm: array [0..50] of values;
Procedure Search; \{ determine first element of permutation not equal to corresponding element in the successor $\}$
begin $\quad \mathrm{i}:=$ order;
perm [0]: $=0$;
repeat

$$
\mathrm{i}:=\mathrm{i}-1 ;
$$

until (perm[i] < perm [i+1]); [ith element will be changed if it is not equal to 0]
end;

Procedure Sort Tail \{arrange in increasing order the elements to the right of the ith \}
label okey;
ebgin if $\mathrm{i}=$ order -1 then go to okay:
for $\mathrm{j}: \mathrm{i}+1$ to order-1 do for $k:=j+1$ to order do
if perm $|k|<$ permlil then begin $\operatorname{perm}[0]:=\operatorname{perm}[k]:$
perm[k]: = perm[i];
perm[j]:= perm [0]:
end:
okay:
end:
Procedure Adjust; [interchange the ith clement and the least element to its right and greater than the ith]
begin $\mathrm{j}:=\mathrm{i}$;
repeat

$$
\mathrm{j}:=\mathrm{j}+1
$$

until (perm[j] > perm|l|);
perm[0]: = perm[j]:
$\operatorname{perm}[j \mid:=\operatorname{perm}[\mathrm{i}]:$
perm [i]:= perm [0]:
end:

Procedure Display; $\{$ write on the screen the permutation $\}$
begin for $\mathrm{i}:=1$ to order do write (perm[1],"):
writeln;
end:
end:
bagin \quad write (Enter the order (1-50): '): readln (Order):
for $\mathrm{i}:=0$ to order do $\{$ deline the initial permutation 123...n $\}$ perm(i$):=\mathrm{i}$;
show: display;
search:
if $\mathrm{i}=0$ then go to done; $\{$ end program if there is no more successor $\}$ sorttail:
adjust;
go to show;
done: write ('End of the lexicographic list!');
end.

Reference

1. Beckenbach, E.F., ed., Applied Combinatorial Mathematics Wiley, 1966.
