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ABSTRACT 

One of the central issues in the efficient and reliable operation of distri­

buted computer systems (DCS) is distributed control. This issue deals with the 
decentralization of the control of the entities that provide the many functions of 

DCS. The absence of a central coordinator forces the entities to rely on timely 

information provided by other entities to decide on the best choice of action& But 

this scheme cannot be solved in reaJ-time because of the overhead in computation 

and communication. Furthermore, the presence of unreliable communication and 

delays add more complexity to the issue. This paper proposes the use of a hier­

archy of coordinators to solve the distributed control issue of DCS. The function 

of the hierarchy of coordinators is to ensure the timely arrival of information and 
to provide the global state of the DCS to the entities. The construct of coordina­

tors also guarantees the computation of the decision process in finite time. This 

paper presents the distributed control algorith m  based on the construct. To study 

its behavior, a test bed was implemented on a multiprocessor architecture, the 

Heterogeneous Element Processor (HEP). Simulation runs made on the HEP 

showed that the construct is viable solution. 

Introduction 

A current issue that generates much interest in research is the distributed 
control in distributed con1puter system (DCS). DCS offers several advantages over 

Von Neumann type of computers. An1ong the advantages are computation speed-up, 
high reliability, resource sharing, better utilization and extensibility [STAN84] . To 
achieve high reliability in DCS, functions such as scheduling algorithms, deadlock 
detection, routing and congestion control algorithms and concurrency control algo­
rithms are distributed over several decision makers on nodes in the DCS. But having 
no central coordinator, control over these functions becomes a difficult task. 

Having all of these algorithms coordinate to achieve good overall performance is 
even more complex. Ho in 1 980 [ H080] proposed to solve this problem through 
team decision scheme. But this algorithm involves a large overhead in terms of 
computation and communication. To reduce the overhead, estimation of the global 
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state requires some relaxation to the team decision scheme such as step delay 
approaches [HOBO] and periodic coordination [LARS82] . 

This paper proposes a structure, the hierarchy of coordinators, to achieve 
distributed control in a DCS. This structure will guarantee that the computation of 
the global state can be done in finite time and satisfy time constraints, in the case 
of real-tin1e systems. An overview of some of the proposed algoritluns to maintain 
the correct and efficient operation of the DCS is presented in section 2 .  Section 3 
of this paper discusses the mechanisrn of the hierarchy of coordinators in rnaintain­
ing distributed control over a set of processes. Then section 4 presents the 
implementation of a test bed for the hierarchy of coordinators on the Heterogenous 
Element Processor (HEP). This machine is an MIMD computer. Sin1ulation runs and 
analysis are described in section 5. Finally, Section 6 offers some future directions 
on our approach. 

Deadlock, Global State and Roll-Back Issues 

Jn a distributed environment ,  there are issues that n1ust be addressed such as 
deadlock detection, global state determination and roll-back mechanism. These 
issues constitute a substantial overhead on the correct and efficient operation of the 
DCS. Research efforts have been directed to answer these issues in the past, 
[JEFF85 ,  CHAN83, CHAN85, OBER82, MENA79] .  

For deadlock detection in a DCS, algorithms were proposed in [CHAN83] . 
The algorithms consist of an idle process initiating a deadlock query message to its 
dependent set. The dependent set consists of a linear order of processes where Pi is 
idle and is waiting for a resource held by Pi+ 1 .  Process Pj is dependent on process Pk 
if there exist a dependent set between processes Pj and Pk. Pj is deadlocked if it is 
dependent on itself. For every deadlock detection computation, the maximum 
number of messages sent for N processes is N*(N-1). Other distributed deadlock 
a lgor i thms  involve  the  c onstruction of the hierarchical wait-for graph 
[MENA 79, OBER82] . The global wait-for graph is constructed from lower level 
coordinators which fonn the wait-for graph of their respective constituents. This 
information is gathered by higher level coordinators until a single coordinator (the 
root) computes the wait-for-graph for the whole system. 

In [ CHAN85 ]  an algorithm was proposed to determine the following state in 
a DCS: a computation has terminated, or the system has deadlocked, or a token has 
disappeared in the ring. The algoritlun to detect any of the above conditions con­
sists of a process (after recording its state) sends a marker along each channel 
incident to and directed away from the process. Each process receiving the marker 
on the channel will record its own state and the marker is sent along its incident  
channel. The algoritlun terminates when all the channels have been traversed. To 
ensure that the computation of the global state is terminated in fmite time, no 
marker will remain forever in a channel and its process will record its state in finite 
time. 
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Finally, [JEFF85]  presented a roll-back schen1e for the system of concurrent 
processes which does not syncluonize. Each message has a t imestamp and each 

process has a local virtual time. The process executes these messages according to a 
timestamp ordering. Since the process docs not synchronize its execution with 
other processes, a straggler message (tiruestamp is less than local time of process) 
n1ight arrive at some time later. V/hen this happens) the schen1e w ill initiate a 
roll-back to undo the previous computation back to a consistent state. This state 
corresponds to the state of the process just before the time indicated on the 
timestan1p of Lhe st raggler n1essage. 

The determination of the global state of the systern of processes is a hard task 
to perform since the processes are at a differem local clocks and the processes 
conununicate at will. The algorithm presented by [CHAN85 ] detennines only 
specific types of global states ( tennination of con1putation� deadlock and loss of 

token) the DCS mig.fJ t be in. Deadlock can occur if there are no constraints in the 
n1anner in which the processes can wait for another process holding a resource. 
Allowing also a process to go ahead of its cmnputation regardless of whether 1he 
process is in synchrony with other processes or not, results in the necessity of a 
ro ll - b a c k  s c h e m e  fo r r e - s y nchro nization. The algorithms presented in 
[CHAN83,  CIIAN85, J EFF85] contain overhead which could lead to unacceptable 
perform ance depending on the frequency or  its invocation and the extent of roiling 
back. 

Hierarchy of Coordinators 

This paper proposes a distributed control algorithm for a DCS. The DC'S is 
Jnodelled as a systern consisting of a set of processes communicating by message 
passing. There are no shared variables and each process is asswned to reside com­
pletely in a processor. Thus the terms process and the processor will be used inter­
changeably in this paper. The comrnunication link between processes is assumed to 
be reliable and the probability of being down is ren1ote. 

Let P = { P1 } be the set of processes, 
= 1 , 2, . . .  , n where I P I = n. 

Let C = { C ij } be the set of coordinators, 

i = 1 '  . . .  ' "Y  = 1 ,  2 ,  . . .  ' 17  
where 'Y is the 1naximum level of hierarchy 

and 77 is the number of  partitions, 

Let [P = { [Pi ) be the set of partitions, 

l = 1 ,  2 , . . .  , 17 and 

[Pi € P if level = 0 

[Pi E C if level > 0. 
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This assignment of coordinators to partitions of processes and coordinators pro­
duces a hierarchy of coordinators, see Fig. 1 .  The coordinator assigned to the root 
is C-y11 where 'Y is the maximum level of hierarchy and 17 is the number of partitions. 

It was mentioned earlier that a process completely resides in a processor. The 
coordinators may or may not be assigned to a separate processor. Thus several 
coordinators might reside in one processor. The hierarchy of coordinators, from 
level 1 to -y, is a logical interconnection among coordinators. To simplify our discus­
sion, however, the coordinators are assumed to reside in separate processors. 

Level 'Y 

Level ("'f·l) partition 11 

Level l 

Level 0 

partition 1 partition 2 partition m 

Fig. 1 

3 . 1  Algorithms for a Coordinator and a Process 

Each process has the following state variables: 

tL = timestamp of the last message received or tune 

of last signal received . 

tN = estimate of the next time a process will send a message. 

s = current state of a process. 

A message contains 4 tuples, (spid, dpid, r, msg), the source and destination 
process( es), the timestamp of the message and the actual message itself. Note that 
the timestamp on the message is the current global time. Whenever a process re­
ceives a message, the process' tL is updated to r and an estimate of the next time the 
process will send a message, tN , will be computed. The process with the minimum 
tN is allowed to corrununicate its results to another process( es). The process with 
the minimum tN is called the imminent process. 
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The algorithm for coordinators ensures synchronization among processes by 
sending appropriate messages to its subordinates and to its upper level coordinator, 
if any. The coordinators maintain the following state variables: 

TL = timestamp of the latest m�ssage received or timestamp of the latest 
signal received (from an upper level coordinator). 

TN = the minimum tN of its subordinates {which is either processes or 
coordinators). 

S = collected states of subordinates. 

Each coordinator has the following responsibilities: to route and scrutinize 
messages for consistency; to collect the states of its subordinates and build a partial 
global picture of the DCS � to synchronize its subordinates� and to guarantee that the 
global state computation terminates. The algorithms are shown in Figs. 2 and 3 .  
Each algorithm consists of the actions taken when receiving an external message, 
emsg; a signal from a coordinator; or an output message from a process, ymsg, from 
subordinates. ·Note that the algorithms discard messages which are out of synchrony 
with the system. 

The following gives a summary of the actions taken by either a process or a 
coordinator when it receives a message. 

When a process receives a signal, it first checks whether the message time­
stamp, r , is within the range of allowable values. The process computes its output 
ym sg to its coordinator. Simultaneously, the process c01nputes its tN 

Algorithm for a Coordinator 

begin 
recv(spid, dpid, r, msg) [ message is received ] 

select 
{TL < = r < = TN and type {msg) = emsg) 
begin 

send (spid, dpid, r, emsg) 
for all processes E dpid 

recv {spid, dpid, tN, s) 
store TN and s 

end for 
end 

(or r = TN and type (msg} = signal ) 
begin 

send {spid, dpid, r, �ignal) 
par begin 

begin 

[ send to all processes ] 
[ in the set dpid and ] 
[ wait until all the ] 
[ processes send their ] 

[ tN and s ] 

[ where dpid is the ] 
[ imminent process ] 
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recv (spid, dpid, tN, s) 
store tN and s 

[ received states from ] 
[ processes ] 

end 
begin 

recv (spid, dpid, T, ymsg) [ received out - ] 
if dpid E subordinates then [ put msg ] 
begin 

send (spid, dpid, T, emsg) [ send ytnsg as ] 
for all processes E dpid [ emsg to the ] 

recv (spid, dpid, tN , s) [ destination ] 
store tN and s [ processes and ] 

end for [ wait for ] 
end [ results ] 
else send (spid, dpid, T, msg) [ else, send ] 

end [ msg to next ] 
parend [ level coordi- ] 

end [ nator ] 

(otherwise) 
begin 

discard msg 
return 

end 
end select 

[ if not within range, disregard ] 
[ message and continue ] 

T L ::: T [ compute the state ] 

TN = n1in (tN of subordinates) [ variables of the ] 

S = compute state (s of subordinates) [ coordinator and ] 

send (spid, dpid, T N,S) [ send results ] 
end. 

Fig. 2 
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Algoritlun for a Process 

begin 
recv (spid, dpid, r, msg) [ message was received ] 
if (tL < = T < = t N) then tL = r 

else 
begin 

discard msg [ if not within range ] 
return 

end 

select 
(r < = tN and type (msg) = emsg) 

s = o ext (s, emsg) 

(r = tN and type (msg) = signal) 

par begin 
begin 

y = A (s) 

send (spid, dpid , r, ymsg) 
end 

s = o int (s) 
parcnd 

end select 

tN = tL + o:(s) 

[ ignore the message ] 

[ 

[ 

[ 
[ 

[ compute ] 

[ state ] 

compute output and 
send result to ] 
processes ] 

compute state ] 

[ compute tN and 1 

] 

send (spid, dpid tN,s) 
end. 

[ send result, including s, 1 

[ to coordinator ] 

Fig. 3 

and its new state, s, which are sent to the coordinator. 

57 

When a coordinator receives a signal i t  checks first the value of T for syn­
chronization consistency. The signal is sent to the imn1inent subordinate (either a 
process or coordinate). After the signal is sent, the coordinator waits for the immi­
nent subordinate to send its new state variables. Then the coordinator determines 
the new imminent subordinate. 

When a process receives a emsg, it first checks r for synchronization consist­
ency. The coordinator then sends emsg to all destination subordinates. The coordi­

nator th�n waits for all destination suhordinates to send their new state variables. 
After which the coordinator detennines its new state vru:iables and the new 

imminent component. 
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When a coordinator receives a ymsg, it detem1ines whether this message is 
destined for a subordinate(s) or not . If the destination is a subordinate(s), then the 
coordinator" sends ymsg as a emsg, otherwise , the coordinator sends the ymsg to 
its uppei level coordinator. 

Implementation of a Test Bed on the HEP Computer 

The architecture of the Heterogeneous Element Processor (HEP) has been 
described in [GAJS85 , HWAN84] .  As shown in Fig. 4, the main components are 
the Data Memory Module , the Packet Switch Network and the Process Execution 
Module . The HEP architecture is classified as a MIMD machine which can execute 
multiple instructions on multiple streams of data. A program consists of one or 
more tasks while each task consists of one or more processes. Each process is 
composed of a sequence of instructions. Both the tasks and processes are executed 
in parallel in HEP while the inst ructions of each process are executed in a sequential 
pipeline fashion . Each PEM has a program memory where active tasks and process 
instruction streams are selected for execution . Up to 50 instruction strean1s can be 
active at  any given time . Notice that each PEM has a number of functional units 
which allow pipeline execution of n1ultiple instruction streams for multiple data 
streams. For software support, HEP has the DENE LCOR's Extended FORTRAN 
77 [DENE 84 ] . This provides the parallel programn1ing environment for the HEP 
computer. 

I 

O.ta 
Memory 

Module 

Pr� 

Execution 

Module 

OMM 

Padcet Switchint Networit I 
memory eccea 

queue 

r-----1' I· . . I ,,_--, PEM 

Fig. 4 
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The synchronization among parallel processes is done via the F /E (full/ 
empty) bit that is tagged on special shared variables called asynchronous variables. 
These variables are prefixed with a "$" character. An instruction which uses the 
contents of an asynchronous variable must wait until the F/E bit of that variable is 
set to full. When the bit is set to full, the content of the variable is made available 
and its F/E bit is then reset to empty. This assures that no two processes can access 
an asynchronous variable at the same time. 

The implementation on the HEP computer consists of translating the algo­
rithtns for a coordinator and for a process (see Figs. 2 and 3) into DENELCOR's 

Extended FORTRAN 77.  Several hierarchical structures were implemented on the 
HEP with varying levels. Each structure was created in the main program by first 
requesting the number of levels in the hierarchy from the user. Then for each level, 
the user is asked to enter the number of children (if any). A node without any 
children is assumed to be a process and the rest of the nodes are coordinators. 

Simulation Runs and Analysis 

Several hierarchical structures were implemented on the HEP computer to 
measure the computation times of the algorithms. Each structure were simulated 
using the following run-time parameters: 

a) Send emsg and ymsg messages to all the processes. In this case when a 
emsg or a ymsg are generated , all the processes will be in the set of 
destination processes. This parameter is equivalent to a DCS whereby 
message passing is heavy. 

b) Send emsg and ymsg to a random number of processes. Here, the des­
tination processes are selected by a random number generator. This 
choice of parameter simulates random message passing for a DCS. 

c) Send emsg and ymsg to only one process. This parameter simulates the 
case where a process communicates with at most one process. 

Another purpose is to fmd the effect of reducing the number of coordinators 
which subsequently reduces the number of levels in the computation of the global 
state. A structure with 8 processes were simulated with varying degrees of levels. 
The percentages of the number of signal to the number of emsg messages sent are 
varied to observe the effects of heavy load on the DCS. 

Simulation runs 

Three different tree structures with 8 processes and varying number of levels 
and coordinators, were implemented. The structures are shown in Figs. 5 ,  6 and 7 .  
The first structure has a single coordinator controlling all 8 processes. The second 
structure is a binary tree with 7 coordinators and 8 processes. The third structure is 
one in which the level of the tree is reduced to eliminate 2 coordinators from the 
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previous binary tree construct. The results of the simulation runs are shown in Figs. 
8 - 10. Comparing the different constructs, the single coordinator takes the longest 
time to compute for the global state. The slope of the curve varies directly as the 
number of signal messages goes up. Note that the receipt of a signal by a process 
results in the production of ymsg message. Comparing the binary tree construct and 
the reduced level tree, the computation times are not significantly different, al­
though the reduced level structure takes a slightly longer computation time . 

Fig. 5 

Fig. 6 Fig. 7 

Analysis of simulation runs 

Shown in Figs. 8, 9 and 1 0  are the plot of simulation runs made for a DCS 
having 8 processes. Note that the simulation runs were made for 1 0%, 30%, 50%, 
80% and 90% signal messages generated as compared to the generation of emsg 
messages. Five runs were made on each plot and the following are the parameters 
on each run : 

a) Run 1 - this run has the messages ymsg and emsg sent to a random 
number of process(es). This run is represented in the line plot by 
squares. 

b) Run 2 - this run has the messages ymsg and emsg sent to almost all 
the processes most of the time. This run is represented by '+' in the 
line plot. 
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c) Run 3 - this run has the messages ymsg and emsg sent to at most 011e 
process most of the time. This run is represented by diamonds in the 
line plot. 

d) Run 4 - this run has the ymsg sent to the farthest process from the 
sending process most of the time while the emsg is sent to a random 
number of process( es). This run is represented by triangles. 

e) Run 5 - this run has the ymsg sent to the nearest process from the 
sending process most of the time while the emsg is sent to a random 
number of process(es). This run is represented by 'x'. 
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Fig. 8 shows the simulation run for the construct with a single coordinator, 
Fig. 9 for the construct with 7 coordinators and Fig. 1 0  for the reduced level of 
hierarchy with 5 coordinators. All plots showed an increased in computation time 
as the percentage of signal messages generated increases. This result is expected 
since the receipt of signal results in the generation of ymsg. All plots also showed 
that Run 3 has the lowest computation time while Run 2 has the highest computa­
tion time. The reason is that Run 2 sends messages to almost all the processes while 
Run 3 sends a single message to just one process. Runs 1 ,  4 and 5 showed an 
average computation times as compared to the two extremes of Runs 2 and 3. The 
single coordinator showed the highest computation time because of bottlenecks at 
the single coordinator. Reducing the level of the hierarchy by one (from 7 to 5 
coordinators) induces a slightly higher computation time than the construct with 7 
coordinators. This indicates that having less number of levels m.ight be equivalent in 
performance to the complete number of coordinators. This is a subject of further 
investigation. 

Conclusion 

This paper has proposed a hierarchy of coordinators for distributed control of 
a DCS. The coordinator's function is to collect information from its subordinates to 
compute the global state. Through the global state, optimal performance can be 
achieved because the complete information is available for accurate decisions. The 
price to pay for the computation of the global state is the synchronization and 
intercommunication schemes for the processes. The processes' communication are 
controlled by the hierarchy of coordinators. As the algorithm shows, only one 
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process (the imn1inent process) is  allowed to communicate at any one time. The 
simulation runs have shown that the computation time varies directly as the 

number of levels increases (or the number of coordinators are increased). 
The hierarchy of coordinators is a compromise between a centralized and a 

distributed approach. The centralized approach utilizes a single coordinator the 
failure of which results in a catastrophe for a DCS. The fully distributed approach 

sometimes lead to unacceptable performance because of the complexity of the 
con1putation and the overhead incurred due to roll-back procedures or re-computa­
tion of its state variables. The hierarchy of coordinators provides a structure where­
by both the advantages of a central coordinator and distributed control are present. 

Failure of any coordinator can be handled using an electron algorithm and crash­
recovery techniques. 
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