
Trans. Nat. Acad. Sci & Tech. (Phils.)
1 98 7. 9:65- 75

A FLEXIBLE PEEPHOLE OPTIMIZATION METHOD
FOR INTERMEDIATE CODES 1

Eliezer A. Albacea
Computer Science Laboratory

Institute of Mathematical Sciences and Physics
University of the Philippines at Los Baffos

ABSTRACf

Object codes generated by compilers are usually not optimal. Several
methods of improving object codes have been devised to further reduce the execu­
tion times of programs. This paper describes a new method under the class of
peephole optimization technique. The method was implemented using a one-pass
Pascal compiler and the intermediate language SLIM. The latter is described brief­
ly in this paper. To evaluate the new method, a comparison of several methods
under the peephole optimization technique is presented. In addition, the codes
generated with and without the proposed method arc compared.

Introduction

Tanenbaum et al [9] stated that in a compiler consisting of a front end that
translates to a common intermediate language and a back end that translates to a

machine's assembly language, improvement of object code can be performed in
three conceptual places.

The first conceptual place is to do the improvement in the front end. The
decision to do it in the front end would consequently require that the translator be
"highly specialized". What we mean by a "highly specialized, translator is a trans�

lator that attempts to generate the best code that it can possibly generate for a
particular source code fragment. Usually this type of translator is too complicated
to construct and thus would require a high development effort. In addition, such
translators will increase the compilation time of source programs because the cOtn­
piler will have to carry out numerous tests to get better object code for a certain
source code fragment. But no matter how specialized the translator is, it will still
miss some possible improvements in the source code fragments translated separately
by the translator. For example, the Pascal statements a:= b + c and d := a + d will
be translated by a highly specialized translator (assuming that it translates each

1 Research supported by the National Research Council of the Philippines (NRCP)
under Project Number B-45 .

65

66 Transactions National Academy of Science

statement separately) to Lb + c Sa followed by La +d SD. Obviously, the translator
will fail to detect the possible improvement of the instructions Sa La to simply Sa.
To catch these possible improvements, however, the compiler should do further im­
provement on the intermediate code. This brings us to the second conceptual
place, i.e., doing the improvement on the intermediate code.

Since doing the improvement in the front end may still require another pass
through the intermediate code to catch every possible improvement, it is usually
advisable to do all the code improvement on the intermediate code and merely
construct a simple front end translator. In this way, the development of the trans­
lator will not involve too much effort. Moreover, since the intermediate language
does not change, the optimization procedures will be the same for all front ends or
back ends.

The last conceptual place is to do the improvement in the back end. This
possibility seems to be the most profitable. The reason is that if the objective is to
catch all possible improvements in the code, then improvement should be done in
the code that is fmally executed. But, this would mean that for every new back
end, a new code improver must be written. Note that a possible improvement in
one machine may not be possible in the other. For example, the sequence of
instructions MOVE.L 4(A l), DO and MOVE. L DO, I O(AO) are Motorola MC68000
instructions which can be improved to MOVE.L 4(A l), l O(AO). But a similar set of
instructions in another machine that does not allow memory to memory copy can
not be improved at all.

Improvement is usually done on the intermediate code to avoid the greater
development effort in doing the improvement in the front end or the back end.
Although doing the improvement on the intermediate code will not catch �11 pos­
sible improvements, the difference compared to doing it in the back end is usually
ilight. This is because each intermediate code is usually mapped to the most effi­
cient actual machine code.

There are several classes of methods devised to improve intermediate codes.
But, we shall be concentrating only on one class, the peephole optimization tech­
nique. After considering the technique in general, a discussion of the implementa­
tions of a peephole optimizer including the new method will be given. To investi­
gate the advantage of the new method, a time comparison of several' programs
compiled with and without the code improver will be presented.

The intermediate code Stack Language for Intermediate Machines (SLIM) and
the SLIM code generated by a one-pass Pascal compiler will be used as basis for the
discussion of the new optimization method. Hence, in the following sections the
SLIM machine and its instructions will first be introduced before the discussion of
the new method.

The SUM Machine

SLIM is a simple one-accumulator, stack-oriented hypothetical machine. The

A lbacea, Peephole Optimization Method 67

tnachine was first proposed by Fox [4] , but was later enhanced by Peck [7] . The
machine was designed with the following principal aims:

1 . To reflect current machine architecture, if possib1e;
2 . To obtain a reasonably simple machine such that i t can be used for

teaching the elements of computing;
3 . To obtain a machine that is suitable as target machine for high-level

languages such as BCPL;
4. To obtain a tool for achieving portability of systems programs; and
5 . To obtain a machine on which i t is possible to have an operating

system.

SLIM is a machine very similar to a conventional computer in that it consists
of a memory and a processor.

The memory of SLIM is a sequence of cells. Each cell contains 'n' bHs with
the value of 'n' impletnentation dependent. I t may be 16 bits, 32 bits, or more, but
the choice depends ent irely on the number of bits required for an address on the
target machine and the memory available. The cells are addressed consecutively
starting fron1 0 to 'm'. The value of 'm' as with the number of bits per cell, is
machine dependent. However, the size of 32K cells was found to be a comfortable
size for many SLIM iinplementations, e .g. , on Perkin Elmer 3230 Motorola
MC68000, I BM 370 (Amdahl 4 70), etc.

SLIM has a total of seven (7) registers. These registers and their functions are
given in Table 1 .

Symbol

A

E

H

c

G

N

s

Table 1 . SLIM Register

Register

Accumulator

Environment

High Point

Program Counter

Global

I nterrupt

Stack Limit

Function

This is where all arithmetic and

logical operations take place

Holds a pointer to the environ­

ment of a procedure

Points to the last useful cell on

the stack

Holds a pointer to the instruction

to be executed

Holds a pointer to the first cell

of a sequence of cells reserved

for global variables

Holds information that is used to

recover from an interrupt

Holds a pointer to the last cell in

the stack

Typical S LI M instructions may contain at most three fields - the operator,
the operand modifier, and the raw operand. The operator field is always present in
the instruction while the raw operand and the operand modifier may or may not
be, depending on the type of instruction.

68 Transactions National Academy of Science

An operation may be L for load, i.e., move data from memory to accumu­
lator (A), S for store, i.e., move data from accumulator (A) to memory, + for add, J
for jump, and so on.

A raw operand is either an unsigned or signed number, a character, the H
register, or a label (@n where 'n' is an integer).

The remaining field is the operand modifier. It is used, if it is part of the
instruction, to qualify the meaning of the raw operand. An operand modifier is
either E (modified by environment), G (modified by global), I (modified by indirec­
tion), IE (combination of environment and indirection), or IG (combination of
global and indirection).

Table 2 sho\YS a list of all the SLIM operators. The table gives a brief descrip­
tion of the operator, and the microcode for each operator to help visualize its
actions. The microcode is written in BCPL. The table does not show all the possible
operands and operand modifiers; instead we represent the operand, modified or
unmodified, by the letter W.

Instruction

Load cell
Store cell

Table 2. SLIM Operators

Mnemonic Microcode

Load cell subscripted
Store cell subscripted
Load byte
Store byte
Load field
Store field
Load device
Store device
Push and load cell
Jump
True jump
False jump
Modify high point
<dop>
<mop>
Procedure call
Procedure return
Push
Exchange
Originate
Void
Quit
Switchon sequential
Switchon indexed
Non-local access

LW
sw
L!W
S!W
L%W
S%W
L:W
S:W
L$r
S$r
PLW
JW
TW
FW
MW
<dop>W
<mop>
cw
R
p
X
0
v
Q
?S
?I
u

<dop> - dyadic SLIM operators
<mop> - monadic SLIM operators

A := W
!W := A
A := A!W
LET V = !H; H - := l; A!W := V
A := A%W
LET V = !H; H - := 1 ; A%W := V
A := W of A
LET V = ! H; H - : = 1 ; W OF A := V
A := A!r
LET V = ! H; H - : = 1 ; A!r : = V
H + := 1 ; ! H := A; A := W
C := W
IF A = TRUE THEN C : = W
IF A = FALSE THEN C := W
H + := W
A := A <op> W
A := <mop> A

C : = E!O; H := E!(-2); E := E!(- 1)
H + : = 1 ; ! H := A
W := H!(- 1) ; H!(- 1) := A; A := W

no operation
exit

Albacea, Peephole Optimization Method 69

Peephole Optimization

Peephole optimization has been used to improve intermediate and actual
machine codes. The method works by looking at a small range of instructions, at
least two instructions, and replacing them by more efficient instructions. This small
range of instructions is referred to as the peephole. The code in the peephole may
be continguous, e.g., the peephole SE2 LIE2 is replaced by SE2 or scattered, e.g.,
the peephole LE2 P . . . SH is replaced by . . . SE2. The nature of the technique is
that the replacement code for a sequence of instructions can be used for further
improvement. An example is given in Table 3.

Table 3. An illustration of peephole optimization

Sequence of Instruction

LIE2 P LIE3 +H <inst>
LIE2 PLIE3 +H <inst>
LIE2 +IE3 <inst>

Peephole

P LIE3
PLIE3 +H
+IE3 <inst>

<inst> - remaining instructions in the sequence

Replacement

PLIE3
+IE3

One of the aims of code improvement is to improve the code in a manner that
the run-time improvement is greater than the overhead introduced by the improve­
ment procedures at compile time. The next section will discuss how this objective is
approached by showing several methods (including the new method) adopted to
implement a peephole optimizer.

Implementation of a Peephole Optimizer

Davidson and Fraser (3] described a method for improving assem bier codes
using two instructions in the peephole. The method works by examining a pair of
instructions in the peephole and replacing them, if possible, with one instruction
which has the same action. In case the pair of instructions can not be reduced to
one instruction, the first of the two instructions gets emitted. The new instructions
in the peephole then are the second instruction of the previous peephole and the
instruction immediately following the previous pair of instructions. For example,
consider the sequence of PDP- t 1 instructions MOV @R3, R2 and ADD #2 R3
which can be replaced by an equivalent one instruction MOV (R3)+, R2 .

Tanenbaum et al. [9] developed a method which allows the number of
instruction in the peephole to vary from one to any number greater than one. The
me thod was used to improve the intermediate code EM and it employs the use of a
pattern/replacement table. The table consists of a collection of lines, each line
having a pattern part (peephole) and a replacement part. In contrast to the ap­
proach by Davidson and Fraser (3] , which uses a constant number of instructions in
the peephole, the pattern part (peephole) vary in number of instructions. Their
method works by simply constructing the patterns and replacements in advance and

70 Transactions National Academy of Science

these are looked up in the table during compilation. To avoid missing new patterns
created by the replacements, the method repeats the matching process until no
more match is found. Examples of pattern and replacement lines are given in Table
4.

Pattern

Table 4. Patterns and replacements in EM

Replacement Comment

LOC A LOC B ADD
LOC 2 MUL

LOC(A + B)
LOC 1 SHL

Add constants A and B
Change multiplication to shift

Note that the length of the pattern (number of instructions) varies and the replace­
ment is not necessarily shorter in length than the pattern. It may have the same
length but the replacement is known to be executed faster than the pattern, e.g.,
the change from multiplication to shifting.

The New Method

This new method can be used to improve the intermediate code SLIM.In fact,
it is theoretically possible to use the method to improve other intermediate codes
like PCODE, JANUS , or any intermediate code generated by a one-pass translator.

The method is an extension of the method employed by Davidson and Fraser
[3] . The difference is that the number of instructions in the peephole is allowed to
increase depending on the kind of source code the translator is translating. The
method, therefore, combines the advantages of the methods by Davidsoh and

Fraser (3] and Tanenbaum et al [9] .
The extension allowing more than two instructions in some code fragments is

essential because the translator generates code which is impossible to improve with
only two instructions in the peephole. For example, given the code fragment , a - b ,

where 'a' and 'b' are the first two local variables of the procedure, then the trans­
lation of the given code fragment is LIE2 P LIE3 PLH -H. Using only two instruc­
tions in the peephole, this can be improved to LlE2 PUE3 PLH -H. The sub­
sequent translation, however, can be improved to LIE2 -IE3 if three instructions
are used in the peephole.

The problem of determining the number of instructions in the peephole for a
particular source code fragment can actually be decided by the manner the trans­
lator translates the code fragment. Take for example the same code fragment, i.e., a
- b, and suppose that the translator translates the right operand first, this would
mean that only two instructions in the peephole are enough to in1prove the code to
its best possible form. To illustrate this point, consider the translation when the
right operand is translated first. The translation will be LIE3 P LIE2 -H which can
be improved to LIE3 PLIE2 -H and finally to LIE+ -IE2.

Note that the foregoing is always true only for a "highly specialized" trans­
lator but not for a one-pass translator. A one·pass translator will usually translate
code fragments from left to right; thus requiring longer patterns in the peephole.

AJbacea, Peephole Optimization Method 7 1

The code improver will initially assume a size of two instructions in the peep­
hole. Whenever a code fragment requiring more than two (2) instructions in the peep­
hole is translated, the size of the instructions in the peephole should correspondingly
increase. What arrangements then are necessary in order to allow the code improver
to change the size of the peephole?

The approach taken in the implementation of this new method was to require
the translator to send a signal to the code improver. The signal will inform the code
improver that the translator is about to translate another source code fragment.
Further, the signal can be in the form of a number. This number will give the code
improver the necessary information on the number of instructions required in the
peephole in order to improve the code fragment being translated to its best possible
form. Another signal must be sent to the code improver once the translation of ·

the current source fragment is through. The size of the peephole then must be sent
back to the previous size, i.e., size of the peephole before the latest signal was
received by the code improver. Note that the previous size is not necessarily equal
to two.

Several advantages can be identified in having the foregoing arrangement . One
is that the search for the patterns and their corresponding replacements will only be
limited on the patterns whose size is equal to the current size of the peephole. This
would consequently mean a significant reduction in search time compared to
searching the pattern from all the available patterns that can possibly be improved.

In the case of a one-pass Pascal translator and SLIM as intennediate code, it
was found that most translation of Pascal code fragments can actually be in1proved
using only two instructions in the peephole. But for Pascal expressions, two instruc­
tions in the peephole are not enough . Three instructions in the peephole were
necessary to improve expressions to their most efficient form.

One n1ight argue that since the set of expressions is the only type of code
fragment that needs more than two instructions in the peephole, why not use two
instructions all throughout? This question makes sense, but if one can reduce the
translation of an expression from five (5) to two (2) using three {3) instructions in
the peephole, instead of from five (5) to four (4) using two (2) instructions in the
peephole, then this will be a great improvement to the code. The reason is that an
expression is actually a sub-fragment of almost all Pascal code fragments (not only
Pascal but also C, BCPL, Algol 60, Algol 68 , PL/1, and other high-level languages).

Adding a code improver of this nature to a one-pass translator will preserve its
one-pass property and therefore overhead due to the introduction of the code
improver during compilation will be tolerable. The translator will translate source
code as before, but everytime an object code is generated it is first pass through the
code improver which decides whether the code can already be emitted or not. In
short, the code in1prover is just acting as a ftlter. The code improver maintains a
peephole wherein everytime the translator produces a code it includes this code in
the peephole. If the new peephole can be improved, it is replaced by its more
efficient equivalent. Otherwise, the oldest instruction in the peephole will be emit­
ted. The code improver will then wait for the translator to generate another object

72 Transactions National Academy of Science

code. The process is repeated until the translator generates the end of program
code.

Patterns and Replacements

There are so many patterns in SUM that can be improved but only those
patterns that can possibly be generated by a one-pass Pascal translator will be
shown. Usually, it is the compiler writer who has full knowledge of the patterns of
instructions that the compiler generates. It is therefore his responsibility to identify
all these patterns and replacements that can be included in the code improver. This
is in addition to the requirement that he should know the number of instructions in
the peephole necessary to improve a certain source code fragment.

Table 5 shows a summary of all the patterns and their corresponding replace­
ments incorporated in the code improver employing the new method. The type of
improvement can be classified into four general classes, namely: folding, rearrange­
ment, strength reduction, and null sequences.

The first group of patterns and replacements constitute those instructions
with operands whose values are known at compil� time. When the values of all
operands in an expression are known at compile time, that expression can be
folded , i.e., replaced by a single value. For example, the instructions M5 M4 can be
replaced by M9. The values of the operands 4 and 5 were replaced by their sum.

The group on rearrangement has the usual purpose of reducing the amount of
temporary storage required during the evaluation of an expression. For exan1ple,
the code L l OO PL50 +H is in1proved to L l OO +50. The unimproved pattern will
first load the value 1 00 into the accumulator; push the value in the accumulator
onto the stack� load the value 50 into the accmnulator· and finally add whatever is
stored in the accumulator with whatever is on top of stack. Compare this to the
improved code where the value 1 00 is loaded into the accumulator and then it is
added to the operand of the + operator, i.e., to 50. The use of temporary storage,
i.e., the use of the stack, was eliminated.

The strength reduction group of patterns and replacements has the objective
of replacing an expensive operation by a cheaper one . The replacement may not
necessarily be shorter than the pattern of instructions to be replaced . One example
is the replacement of multiplication by the shift operation , e .g. , LIE2 * 2 to LIE2
>> I .

Finally, the last group is the null sequences group . These instructions can
well be deleted from the translation of the source program without affecting the
correctness of the translation. In short, this is composed of instructions whose
total effect is null. One example is the pa ttem LIE2 SIE2 . The fust instruction
loads the value of the first local variable into the accumulator and the second
instruction stores it back to where it came from.

It will be shown in the next section that the code improver described intro­
duces a negligible overhead to the compilation of source programs but improves the
execution time by a reasonable amount.

Albacea, Peephole Optimization Method

Table 5 . Patterns and replacements in SLIM

Pattern

Lc ­
Mb M e

Lei> '\1
L - l rv

Folding

Rearrangement

PLm <di>H

PLm PLH <di>H

Lm * 2

Lrn /2

Lm *4

Lm /4

Lm * 8

L m /8

* - 1

4* - 1 .0
/- 1

#/ - 1 .0

J(tld (al } :
j(o)k](a)!
P Lm

Me R
R R
S Ec LI Ec
LIEc SEc

+0

;f + 0.0
- 0

- 0.0
* L

* 1 .0
/ 1
/ l .O

Strength Reduction

Null Sequences

b & c - integer constants
k & 1 - labels

Replacement

L-c
M(b+c)
L- J
LO

<di>m

<dj>m

Lm > > l

Lm < < l

Lm >>2

Lm <<2

Lm >>3
Lm <<3

tl!'l :

J (iiJk
PLm
R
R
SEc

m - S L I M modifier

<di> - d yadic SLIM operator

7 3

74 Transactions National Academy of Science

Comparison of Improved and Unimproved SUM Code

The Pascal translator was used to compile several progran1s to investigate the
effect of the code improver on the compilation and execution times of source
programs. Of course, at tempting to improve the code will almost certainly degrade
the compilation of source programs. But , if the improvement will decrease the
execution time by at least the same amount as the increase in compilation time
then the improvement carried out on the code is certainly worthwhile.

To see whether the method used by the code improver results in an improve­
ment, i.e., the decrease in execution time is greater than the increase in compila­
tion time, the translator was used to translate the following programs:

1 . Implementation of the date of Easter algorithm by Amman [2] .
2 . Sorting of 1 000 data items using the quicksort algorithm.
3. Implementation of the eight queens problem by Wirth [J 0] .
4. Multiplying a 20 by 20 matrix.

The programs were translated (with and without the code improver) and
executed. The summary of compilation and execution times are given in Table 6
and Table 7, respectively.

Table 6. Compilation times in (seconds)

Program

Date of Easter

Quicksort

Eight Queens

Matrix M ultiplication

Wirh the Code Improver

0.46

0.7 1

0.6 l

0.33

Table 7. Execution times (in seconds)

Program

Date of Laster

Quicksort

Eight Queens
Matrix M ultiplication

Improved SLIM Code

0.38
1 .36
3 . 1 6
0.96

Without the Code ltnprm'er

0.4 1

0.67

0.6 1

0.33

Unimproved SL�f Code

0.69
1.78
4.07
l . J 1

Albacea, Peephole Optimizatjon Method 75

I t is clear from Table 6 and Table 7 that the degradation in compilation due
to the introduction of the code improver is less than 0.1 second. But, the improve­
ment in execution time is much more than 0. 1 second. This shows that computing
cost can be reduced with the introduction of the code improver.

The significant decrease in execution time can be attributed to the significant
decrease in number of instructions in the improved SLIM equivalent. This is illus­
trated in the date of Easter program where the number of SLJM instructions is
reduced from 235 instructions to 1 3 1 instructions. A significant difference of 1 04
instructions. This difference is 44.26% of the original number of instructions.

Conclusion

Although the new method was tested using a one-pass Pascal translator and
SUM as intermediate code, it is worth noting that the method can also be used for
other high-level language translators generating intennediate codes. In addition, it
can also be added to compilers generating assemblers instead of intermediate codes.
But, of course, the method should only be employed in con1pilers generating assem­
bler codes when it was previously determined that it will be impossible to improve
the assembler equivalent of some source code fragments using only two instructions
in the peephole.

Introducing the n1ethod to existing compilers will require the modification of
the compiler itself and the writing of the code improver. The modification on the
compiler is necessary because the method requires the translator (compiler) to send
a signal about the type of source code it is about to translate.

References

Albacea, E.A. 1985 . A n Intermediate Code for the Translation of Pascal and BCPL. The Uni­

versity Wollongong MSc(Hons) Thesis, Wollongong, N.S. W., Australia.

Amman. U. 1 977. ·'On code generation in a Pascal compiler," Software - Practice and Experi­

ence, 7(3) :39 t-423.
David�n, J . W., and C.W. Fraser, 1980. " The design and application of a retargetable peephole

optimizer,, ACM Transactions on Programming Languages and Systems, 2(2) : 1 9 1-202.
Fox, M. 1 978. Machine Architecture and the Programming Language BCPL, University of

British Columbia MSc Thesis, Vancouver, Canada.

K nuth. D. E. 1 968. The Art of Computer Programm ing, Volwne 1 , Addition-Wesley, New
York.

McKeenan, W.M. 1 965. ''Peephole Optimization,, Comm. ACM, 8(7) :443444.
Peck, J .E.L. The Essence of Portable Programming, in Preparation.
Peck , J.E.L. Private communications.

Tanenbaun, A .S., Il van Stavaren and J.W. Stevenson. 1 982. "Using Peephole Optimization

on Intermediate Code," ACM Transactions on Programming Languages and Systems,
4(1) :23-36.

Wirth. N.) 976. Algorithms + Data Structures = Programs, Prentice-Hall, Inc . • Englewood

Cliffs, N.J.

