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ABSTRACf 

Object codes generated by compilers are usually not optimal. Several 
methods of improving object codes have been devised to further reduce the execu­
tion times of programs. This paper describes a new method under the class of 
peephole optimization technique. The method was implemented using a one-pass 
Pascal compiler and the intermediate language SLIM. The latter is described brief­
ly in this paper. To evaluate the new method, a comparison of several methods 
under the peephole optimization technique is presented. In addition, the codes 
generated with and without the proposed method arc compared. 

Introduction 

Tanenbaum et al [9] stated that in a compiler consisting of a front end that 
translates to a common intermediate language and a back end that translates to a 

machine's assembly language, improvement of object code can be performed in 
three conceptual places. 

The first conceptual place is to do the improvement in the front end. The 
decision to do it in the front end would consequently require that the translator be 
"highly specialized".  What we mean by a "highly specialized, translator is a trans� 

lator that attempts to generate the best code that it can possibly generate for a 
particular source code fragment. Usually this type of translator is too complicated 
to construct and thus would require a high development effort. In addition, such 
translators will increase the compilation time of source programs because the cOtn­
piler will have to carry out numerous tests to get better object code for a certain 
source code fragment. But no matter how specialized the translator is, it will still 
miss some possible improvements in the source code fragments translated separately 
by the translator. For example, the Pascal statements a:= b + c and d := a + d will 
be translated by a highly specialized translator (assuming that it translates each 
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statement separately) to Lb + c Sa followed by La +d SD. Obviously, the translator 
will fail to detect the possible improvement of the instructions Sa La to simply Sa. 
To catch these possible improvements, however, the compiler should do further im­
provement on the intermediate code. This brings us to the second conceptual 
place, i.e., doing the improvement on the intermediate code. 

Since doing the improvement in the front end may still require another pass 
through the intermediate code to catch every possible improvement, it is usually 
advisable to do all the code improvement on the intermediate code and merely 
construct a simple front end translator. In this way, the development of the trans­
lator will not involve too much effort. Moreover, since the intermediate language 
does not change, the optimization procedures will be the same for all front ends or 
back ends. 

The last conceptual place is to do the improvement in the back end. This 
possibility seems to be the most profitable. The reason is that if the objective is to 
catch all possible improvements in the code, then improvement should be done in 
the code that is fmally executed. But, this would mean that for every new back 
end, a new code improver must be written. Note that a possible improvement in 
one machine may not be possible in the other. For example, the sequence of 
instructions MOVE.L 4(A l ), DO and MOVE. L DO, I O(AO) are Motorola MC68000 
instructions which can be improved to MOVE.L 4(A l ), l O(AO). But a similar set of 
instructions in another machine that does not allow memory to memory copy can 
not be improved at all. 

Improvement is usually done on the intermediate code to avoid the greater 
development effort in doing the improvement in the front end or the back end. 
Although doing the improvement on the intermediate code will not catch �11 pos­
sible improvements, the difference compared to doing it in the back end is usually 
ilight. This is because each intermediate code is usually mapped to the most effi­
cient actual machine code. 

There are several classes of methods devised to improve intermediate codes. 
But, we shall be concentrating only on one class, the peephole optimization tech­
nique. After considering the technique in general, a discussion of the implementa­
tions of a peephole optimizer including the new method will be given. To investi­
gate the advantage of the new method, a time comparison of several' programs 
compiled with and without the code improver will be presented. 

The intermediate code Stack Language for Intermediate Machines (SLIM) and 
the SLIM code generated by a one-pass Pascal compiler will be used as basis for the 
discussion of the new optimization method. Hence, in the following sections the 
SLIM machine and its instructions will first be introduced before the discussion of 
the new method. 

The SUM Machine 

SLIM is a simple one-accumulator, stack-oriented hypothetical machine. The 
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tnachine was first proposed by Fox [4] , but was later enhanced by Peck [7 ] . The 
machine was designed with the following principal aims:  

1 .  To reflect current machine architecture, if possib1e; 
2 .  To obtain a reasonably simple machine such that i t  can be used for 

teaching the elements of computing; 
3 .  To obtain a machine that is suitable as target machine for high-level 

languages such as BCPL; 
4. To obtain a tool for achieving portability of systems programs; and 
5 .  To obtain a machine on which i t  is possible to  have an operating 

system. 

SLIM is a machine very similar to a conventional computer in that it consists 
of a memory and a processor. 

The memory of SLIM is a sequence of cells. Each cell contains 'n' bHs with 
the value of 'n' impletnentation dependent. I t  may be 16  bits, 32 bits, or more, but 
the choice depends ent irely on the number of bits required for an address on the 
target machine and the memory available. The cells are addressed consecutively 
starting fron1 0 to 'm'. The value of 'm' as with the number of bits per cell, is 
machine dependent. However, the size of 32K cells was found to be a comfortable 
size for many SLIM iinplementations, e .g. ,  on Perkin Elmer 3230 Motorola 
MC68000, I BM 370 (Amdahl 4 70), etc. 

SLIM has a total of seven (7) registers. These registers and their functions are 
given in Table 1 .  

Symbol 

A 

E 

H 

c 

G 

N 

s 

Table 1 .  SLIM Register 

Register 

Accumulator 

Environment 

High Point 

Program Counter 

Global 

I nterrupt 

Stack Limit 

Function 

This is where all arithmetic and 

logical operations take place 

Holds a pointer to the environ­

ment of a procedure 

Points to the last useful cell on 

the stack 

Holds a pointer to the instruction 

to be executed 

Holds a pointer to the first cell 

of a sequence of cells reserved 

for global variables 

Holds information that is used to 

recover from an interrupt 

Holds a pointer to the last cell in 

the stack 

Typical S LI M  instructions may contain at most three fields - the operator, 
the operand modifier, and the raw operand. The operator field is always present in 
the instruction while the raw operand and the operand modifier may or may not 
be, depending on the type of instruction. 
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An operation may be L for load, i.e.,  move data from memory to accumu­
lator (A), S for store, i.e., move data from accumulator (A) to memory, + for add, J 
for jump, and so on. 

A raw operand is either an unsigned or signed number, a character, the H 
register, or a label ( @n where 'n' is an integer). 

The remaining field is the operand modifier. It is used, if it is part of the 
instruction, to qualify the meaning of the raw operand. An operand modifier is 
either E (modified by environment), G (modified by global), I (modified by indirec­
tion), IE (combination of environment and indirection), or IG (combination of 
global and indirection). 

Table 2 sho\YS a list of all the SLIM operators. The table gives a brief descrip­
tion of the operator, and the microcode for each operator to help visualize its 
actions. The microcode is written in BCPL. The table does not show all the possible 
operands and operand modifiers; instead we represent the operand, modified or 
unmodified, by the letter W. 

Instruction 

Load cell 
Store cell 

Table 2. SLIM Operators 

Mnemonic Microcode 

Load cell subscripted 
Store cell subscripted 
Load byte 
Store byte 
Load field 
Store field 
Load device 
Store device 
Push and load cell 
Jump 
True jump 
False jump 
Modify high point 
<dop> 
<mop> 
Procedure call 
Procedure return 
Push 
Exchange 
Originate 
Void 
Quit 
Switchon sequential 
Switchon indexed 
Non-local access 

LW 
sw 
L!W 
S!W 
L%W 
S%W 
L:W 
S:W 
L$r 
S$r 
PLW 
JW 
TW 
FW 
MW 
<dop>W 
<mop> 
cw 
R 
p 
X 
0 
v 
Q 
?S 
?I 
u 

<dop> - dyadic SLIM operators 
<mop> - monadic SLIM operators 

A := W  
!W := A 
A := A!W 
LET V = !H; H - := l; A!W := V 
A := A%W 
LET V =  !H; H - := 1 ; A%W := V 
A := W of A 
LET V = ! H;  H - : =  1 ;  W OF A :=  V 
A := A!r  
LET V = ! H;  H - : = 1 ;  A!r  : = V 
H + := 1 ;  ! H  := A; A :=  W 
C := W  
IF A = TRUE THEN C : = W 
IF A =  FALSE THEN C :=  W 
H + := W 
A := A <op> W 
A := <mop> A 

C : =  E!O; H :=  E!(  -2);  E := E!( - 1) 
H + : =  1 ;  ! H  := A 
W := H!(- 1 ) ;  H!(- 1) := A;  A := W 

no operation 
exit 
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Peephole Optimization 

Peephole optimization has been used to improve intermediate and actual 
machine codes. The method works by looking at a small range of instructions, at 
least two instructions, and replacing them by more efficient instructions. This small 
range of instructions is referred to as the peephole. The code in the peephole may 
be continguous, e.g., the peephole SE2 LIE2 is replaced by SE2 or scattered, e.g., 
the peephole LE2 P . . .  SH is replaced by . . .  SE2. The nature of the technique is 
that the replacement code for a sequence of instructions can be used for further 
improvement. An example is given in Table 3. 

Table 3.  An illustration of peephole optimization 

Sequence of Instruction 

LIE2 P LIE3 +H <inst> 
LIE2 PLIE3 +H <inst> 
LIE2 +IE3 <inst> 

Peephole 

P LIE3 
PLIE3 +H 
+IE3 <inst> 

<inst> - remaining instructions in the sequence 

Replacement 

PLIE3 
+IE3 

One of the aims of code improvement is to improve the code in a manner that 
the run-time improvement is greater than the overhead introduced by the improve­
ment procedures at compile time. The next section will discuss how this objective is 
approached by showing several methods (including the new method) adopted to 
implement a peephole optimizer. 

Implementation of a Peephole Optimizer 

Davidson and Fraser (3] described a method for improving assem bier codes 
using two instructions in the peephole. The method works by examining a pair of 
instructions in the peephole and replacing them, if possible, with one instruction 
which has the same action. In case the pair of instructions can not be reduced to 
one instruction, the first of the two instructions gets emitted. The new instructions 
in the peephole then are the second instruction of the previous peephole and the 
instruction immediately following the previous pair of instructions. For example, 
consider the sequence of PDP- t 1 instructions MOV @R3, R2 and ADD #2 R3 
which can be replaced by an equivalent one instruction MOV (R3)+,  R2 . 

Tanenbaum et al. [9] developed a method which allows the number of 
instruction in the peephole to vary from one to any number greater than one. The 
me thod was used to improve the intermediate code EM and it employs the use of a 
pattern/replacement table. The table consists of a collection of lines, each line 
having a pattern part (peephole) and a replacement part. In contrast to the ap­
proach by Davidson and Fraser (3] , which uses a constant number of instructions in 
the peephole, the pattern part (peephole) vary in number of instructions. Their 
method works by simply constructing the patterns and replacements in advance and 
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these are looked up in the table during compilation. To avoid missing new patterns 
created by the replacements, the method repeats the matching process until no 
more match is found. Examples of pattern and replacement lines are given in Table 
4. 

Pattern 

Table 4. Patterns and replacements in EM 

Replacement Comment 

LOC A LOC B ADD 
LOC 2 MUL 

LOC(A + B) 
LOC 1 SHL 

Add constants A and B 
Change multiplication to shift 

Note that the length of the pattern (number of instructions) varies and the replace­
ment is not necessarily shorter in length than the pattern. It may have the same 
length but the replacement is known to be executed faster than the pattern, e.g., 
the change from multiplication to shifting. 

The New Method 

This new method can be used to improve the intermediate code SLIM.In fact, 
it is theoretically possible to use the method to improve other intermediate codes 
like PCODE, JANUS , or any intermediate code generated by a one-pass translator. 

The method is an extension of the method employed by Davidson and Fraser 
[3] . The difference is that the number of instructions in the peephole is allowed to 
increase depending on the kind of source code the translator is translating. The 
method, therefore, combines the advantages of the methods by Davidsoh and 

Fraser (3]  and Tanenbaum et al [9] . 
The extension allowing more than two instructions in some code fragments is 

essential because the translator generates code which is impossible to improve with 
only two instructions in the peephole. For example, given the code fragment , a - b ,  

where 'a' and 'b' are the first two local variables of  the procedure, then the trans­
lation of the given code fragment is LIE2 P LIE3 PLH -H. Using only two instruc­
tions in the peephole, this can be improved to LlE2 PUE3 PLH -H. The sub­
sequent translation, however, can be improved to LIE2 -IE3 if three instructions 
are used in the peephole. 

The problem of determining the number of instructions in the peephole for a 
particular source code fragment can actually be decided by the manner the trans­
lator translates the code fragment. Take for example the same code fragment, i.e., a 
- b,  and suppose that the translator translates the right operand first, this would 
mean that only two instructions in the peephole are enough to in1prove the code to 
its best possible form. To illustrate this point, consider the translation when the 
right operand is translated first. The translation will be LIE3 P LIE2 -H which can 
be improved to LIE3 PLIE2 -H and finally to LIE+ -IE2. 

Note that the foregoing is always true only for a "highly specialized" trans­
lator but not for a one-pass translator. A one·pass translator will usually translate 
code fragments from left to right; thus requiring longer patterns in the peephole. 
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The code improver will initially assume a size of two instructions in the peep­
hole. Whenever a code fragment requiring more than two (2) instructions in the peep­
hole is translated, the size of the instructions in the peephole should correspondingly 
increase. What arrangements then are necessary in order to allow the code improver 
to change the size of the peephole? 

The approach taken in the implementation of this new method was to require 
the translator to send a signal to the code improver. The signal will inform the code 
improver that the translator is about to translate another source code fragment. 
Further, the signal can be in the form of a number. This number will give the code 
improver the necessary information on the number of instructions required in the 
peephole in order to improve the code fragment being translated to its best possible 
form. Another signal must be sent to the code improver once the translation of · 

the current source fragment is through. The size of the peephole then must be sent 
back to the previous size, i.e., size of the peephole before the latest signal was 
received by the code improver. Note that the previous size is not necessarily equal 
to two. 

Several advantages can be identified in having the foregoing arrangement .  One 
is that the search for the patterns and their corresponding replacements will only be 
limited on the patterns whose size is equal to the current size of the peephole. This 
would consequently mean a significant reduction in search time compared to 
searching the pattern from all the available patterns that can possibly be improved. 

In the case of a one-pass Pascal translator and SLIM as intennediate code, it 
was found that most translation of Pascal code fragments can actually be in1proved 
using only two instructions in the peephole. But for Pascal expressions, two instruc­
tions in the peephole are not enough . Three instructions in the peephole were 
necessary to improve expressions to their most efficient form. 

One n1ight argue that since the set of expressions is the only type of code 
fragment that needs more than two instructions in the peephole, why not use two 
instructions all throughout? This question makes sense, but if one can reduce the 
translation of an expression from five (5) to two (2) using three {3) instructions in 
the peephole, instead of from five (5) to four ( 4) using two (2) instructions in the 
peephole, then this will be a great improvement to the code. The reason is that an 
expression is actually a sub-fragment of almost all Pascal code fragments (not only 
Pascal but  also C, BCPL, Algol 60, Algol 68 , PL/1, and other high-level languages). 

Adding a code improver of this nature to a one-pass translator will preserve its 
one-pass property and therefore overhead due to the introduction of the code 
improver during compilation will be tolerable. The translator will translate source 
code as before, but everytime an object code is generated it is first pass through the 
code improver which decides whether the code can already be emitted or not. In 
short, the code in1prover is just acting as a ftlter. The code improver maintains a 
peephole wherein everytime the translator produces a code it includes this code in 
the peephole. If the new peephole can be improved,  it is replaced by its more 
efficient equivalent. Otherwise, the oldest instruction in the peephole will be emit­
ted. The code improver will then wait for the translator to generate another object 
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code. The process is repeated until the translator generates the end of program 
code. 

Patterns and Replacements 

There are so many patterns in SUM that can be improved but only those 
patterns that can possibly be generated by a one-pass Pascal translator will be 
shown. Usually, it is the compiler writer who has full knowledge of the patterns of 
instructions that the compiler generates. It is therefore his responsibility to identify 
all these patterns and replacements that can be included in the code improver. This 
is in addition to the requirement that he should know the number of instructions in 
the peephole necessary to improve a certain source code fragment. 

Table 5 shows a summary of all the patterns and their corresponding replace­
ments incorporated in the code improver employing the new method. The type of 
improvement can be classified into four general classes, namely: folding, rearrange­
ment, strength reduction, and null sequences. 

The first group of patterns and replacements constitute those instructions 
with operands whose values are known at compil� time. When the values of all 
operands in an expression are known at compile time, that expression can be 
folded ,  i.e., replaced by a single value. For example, the instructions M5 M4 can be 
replaced by M9. The values of the operands 4 and 5 were replaced by their sum. 

The group on rearrangement has the usual purpose of reducing the amount of 
temporary storage required during the evaluation of an expression. For exan1ple, 
the code L l OO PL50 +H is in1proved to L l OO +50. The unimproved pattern will 
first load the value 1 00 into the accumulator; push the value in the accumulator 
onto the stack� load the value 50 into the accmnulator· and finally add whatever is 
stored in the accumulator with whatever is on top of stack. Compare this to the 
improved code where the value 1 00 is loaded into the accumulator and then it is 
added to the operand of the + operator, i.e., to 50. The use of temporary storage, 
i.e., the use of the stack, was eliminated. 

The strength reduction group of patterns and replacements has the objective 
of replacing an expensive operation by a cheaper one . The replacement may not 
necessarily be shorter than the pattern of instructions to be replaced .  One example 
is the replacement of multiplication by the shift operation , e .g. ,  LIE2 * 2  to LIE2 
>> I .  

Finally, the last group is the null sequences group . These instructions can 
well be deleted from the translation of the source program without affecting the 
correctness of the translation. In short, this is composed of instructions whose 
total effect is null. One example is the pa ttem LIE2 SIE2 . The fust instruction 
loads the value of the first local variable into the accumulator and the second 
instruction stores it back to where it came from. 

It will be shown in the next section that the code improver described intro­
duces a negligible overhead to the compilation of source programs but improves the 
execution time by a reasonable amount. 
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Table 5 .  Patterns and replacements in SLIM 

Pattern 

Lc ­
Mb M e  

Lei> '\1 
L - l rv 

Folding 

Rearrangement 

PLm <di>H 

PLm PLH <di>H 

Lm * 2  

Lrn /2 

Lm *4 

Lm /4 

Lm * 8  

L m  /8 

* - 1  

4* - 1 .0 
/- 1 

#/ - 1 .0 

J(tld (al } : 
j(o)k ](a)! 
P Lm 

Me R 
R R  
S Ec LI Ec 
LIEc SEc 

+0 

;f + 0.0 
- 0 

# - 0.0 
* L  

# * 1 .0 
/ 1  
# / l .O 

Strength Reduction 

Null Sequences 

b & c - integer constants 
k & 1 - labels 

Replacement 

L-c 
M(b+c) 
L- J 
LO 

<di>m 

<dj>m 

Lm > > l  

Lm < < l  

Lm >>2 

Lm <<2 

Lm >>3 
Lm <<3 

tl!'l : 

J (iiJk 
PLm 
R 
R 
SEc 

m - S L I M  modifier 

<di> - d yadic SLIM operator 

7 3  
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Comparison of Improved and Unimproved SUM Code 

The Pascal translator was used to compile several progran1s to investigate the 
effect of the code improver on the compilation and execution times of source 
programs. Of course, at tempting to improve the code will almost certainly degrade 
the compilation of source programs. But , if the improvement will decrease the 
execution time by at least the same amount as the increase in compilation time 
then the improvement carried out on the code is certainly worthwhile. 

To see whether the method used by the code improver results in an improve­
ment, i.e., the decrease in execution time is greater than the increase in compila­
tion time, the translator was used to translate the following programs: 

1 .  Implementation of the date of Easter algorithm by Amman [2 ] . 
2 .  Sorting of 1 000 data items using the quicksort algorithm. 
3.  Implementation of the eight queens problem by Wirth [ J 0] . 
4. Multiplying a 20 by 20 matrix. 

The programs were translated (with and without the code improver) and 
executed. The summary of compilation and execution times are given in Table 6 
and Table 7,  respectively. 

Table 6. Compilation times in ( seconds) 

Program 

Date of Easter 

Quicksort 

Eight Queens 

Matrix M ultiplication 

Wirh the Code Improver 

0.46 

0.7 1 

0.6 l 

0.33 

Table 7. Execution times (in seconds) 

Program 

Date of Laster 

Quicksort 

Eight Queens 
Matrix M ultiplication 

Improved SLIM Code 

0.38 
1 .36 
3 . 1 6  
0.96 

Without the Code ltnprm'er 

0.4 1 

0.67 

0.6 1 

0.33 

Unimproved SL�f Code 

0.69 
1.78 
4.07 
l . J  1 
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I t  is clear from Table 6 and Table 7 that the degradation in compilation due 
to the introduction of the code improver is less than 0.1  second. But, the improve­
ment in execution time is much more than 0. 1 second. This shows that computing 
cost can be reduced with the introduction of the code improver. 

The significant decrease in execution time can be attributed to the significant 
decrease in number of instructions in the improved SLIM equivalent. This is illus­
trated in the date of Easter program where the number of SLJM instructions is 
reduced from 235 instructions to 1 3 1  instructions. A significant difference of 1 04 
instructions. This difference is 44.26% of the original number of instructions. 

Conclusion 

Although the new method was tested using a one-pass Pascal translator and 
SUM as intermediate code, it is worth noting that the method can also be used for 
other high-level language translators generating intennediate codes. In addition, it 
can also be added to compilers generating assemblers instead of intermediate codes. 
But, of course, the method should only be employed in con1pilers generating assem­
bler codes when it was previously determined that it will be impossible to improve 
the assembler equivalent of some source code fragments using only two instructions 
in the peephole. 

Introducing the n1ethod to existing compilers will require the modification of  
the compiler itself and the writing of  the code improver. The modification on the 
compiler is necessary because the method requires the translator (compiler) to send 
a signal about the type of source code it is about to translate. 
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