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ABSTRACT 

Statistics which can be expressed as11. linear combinations of order statis­
tics, called L-estimates, are considered in this paper. Much of the current theory 
on this subject deals with the case of univariate and identical parent populations. 
The present paper considers the general theory in which the parent populations 
are multivariate which may or may not be identical. The results of the previous 
authors are then shown as merely special cases of the present investigation in 
which the d imension is reduced top :: 1 .  

Introduction 

The observation that the sample mean is unduly influenced by extreme 
observations has prompted present-day Statisticians to  develop a class of statistics 
called robust statistics. This new field of Statistics includes the R, M and L esti­
mates. The R estimates are estimates obtained by using the rank scores of the 
sample values. The M estimates are estimates obtained by minimizing some func­
tions of Xt - 8 where (} is the unknown parameter. On the other hand, L estimates 
are estimates of the form: 

( 1) . . .  
,., n 
fJ = L C; Xu> 

;:: 1 

where X( 1) < X<2) < ... < X(n) are the ordered sample values and the C;'s are 
weights. 

Among the proposed competitors of the sample mean, the L estimates _are 
the easiest to implement computationally. The R estimates may sometimes in­
volved complicated mathematics and their efficiency, in general, is more difficult 
to assess. On the other hand, no closed forms of the M estimates can be given in 
general. The determination of the M estimates may, for example, involve the use 
of Newton-Raphson method. 

*With the assistance of: Dr. Khursheed Alam, Clemson University, Clemson, South 
Carolina, U.S.A. 
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Because of the simplicity and mathematical tractability of the L estimates, 
much has been written on its asymptotic behavior in the univariate setting. Uoyd 
( 19 52) has derived an optimum L estimate for a ftxed sample size. The asymptotic 
analysis has been linked with asymptotic nonnality through several approaches by 
Chernoff, Gastwirth, and Johns ( 1967), Stigler ( 1969, 1972), Shorack ( 1969, 
1972), Boos ( 1977, 1979) and others. The asymptotic normality is derived under 

various restrictions on the underlying distribution from which the sample is drawn 
and the weights - generating function of the linear combination of the order 
statistics. giving the L-estimate. 

The standard asymptotic theory of £-estimates deals with sample values 
which are univariate and has a common distribution: A few papers have been written 
on the case of variable distribution such as those by Shorack (I973) and Stigler 
( 1974) .  

In the present paper, we develop a general asymptotic theory of L-estimates 
in the multivariate setting wherein the parent populations may or may not be 
identical. All the results of the previous authors will then be seen as special cases 
of the present investigation when the dimension is reduced to p = I. Of particular 
interest in the case of the asymptotic distribution of the sample median which was 
derived by Mood ( 1941)  and Lehmann ( 1984) and again by Padua (I986) under 
various setting. 

Section 2 develops the asymptotic theory, Section 3 considers some appli­
cations and finally Section 4 gives some directions for future research. 

Multivariate Distribution 

Let X 1, . . .  , Xn be n independent p-dimensional random variables with 
cdf F1, . . •  , Fn, respectively. Let X11 denote the jth component of

.
X1 and X<!/ >< 

... < X(ni) denote the ordered values of X1 i, . . . , Xnt Let L = (L1 n' ... , Lpn) ', 
where 

I 
n 

L� = � ct x(iiJ Jn n 1 

ijn 

c. = n J (u) du , l 
f- 1 
n 

J is a bounded integrable function on [0, I]. For y = (y 1, . . .  , y p), let 

0 for y1 <X11 
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• * 

First we consider the i. i.d. case when F1 = . . .  = F n = F , say. Let Fi denote the 
cdf of Xii· We shall assume that 

(2) . . .  

Let z� = 

l 

* Z .. = 

,, 

* p.. = 

J 

(Z�1 , ... , z� )', l lp p. 
* 

= 

and I;* = (a;k)' where 
(Jl;' .. . ' p.;), 

r: (Hii (X) -F;(x)) J(F;(X)) dx 

f oo xJ(F�(x)) d F�(x) J I 
_oo 

and 

•;k = �-: 1: J(F;(u)) J(F; (v)) (min {F;(u), 

F; (v) )- F7(u) F; (v) dudv. 

The proof given in Padua (1986) for the derivation of the asymptotic distribution 
" * of L in the univariate case goes through for each component of L . Thus we have 
n _ t:: * ,. n 

the asymptotic representation of v n (L - J..L ) as n 

(3) . . .  z• 
= 

-1 

Vn 

n 
� z;. 
1 

From (3) and the multivariate central limit theorem we have 
Theorem l. Let J be bounded and continuous a. e. F*- 1 on [0, 1] . lf (2) is 

satisfied and �· is positive defmite then vn (L: - p..*) � N (0, �·)as n----+ 
oo

. 

Theorem 2. Let J be bounded and continuous a. e. F*-1 on [0, 1] , j = 1, 
. . . , p, such that J (u) = 0 for 0 < u <a: ctnd (3 < u < 1. If the a: and (3 quantiles of 
F7 are uniquely defmed for each j, and I;* is positive definite then 

Vn (L:- p.*) � N (0, l;*) as n -+ oo .  

Next we consider the non-i. i d. case. Let F;i denote the cdf of Xij and let 
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A 

F; (x) = 
1 n 

L F;; (x), j = 1, . .. , p. 
n i= 1 

We shall assume that F� (x) tends to a limiting distribution r (x) for each X, as I I 
n� oo. 

Proposition 1 *. There exists a positive number N, such that 

00 
A 

Vn IF;(x)-F;(x)l dx < N,j = 1, . . . , p. 
_oo 

for sufficiently large n. 

·Proposition 1 1  *. There exists a function Q (0 < Q (x) < 1) and positive num­
bers a and b (0 < b < 1 ), such that Qb (x) is integrable, and for sufficiently large 
n, Fn; (x) < Q2 (x) for x <-a and 1 -Fn; (x) <Q2 (x) for x >a,)= 1, . . .  ,p. 

Proposition 1 1 1  *. As n � oo 

Vn i� (F;(x) - F; (x)) J(F; (x)) dx -+ ci , 

j = 1, . . .  ' p. 

where the c; are constants, such that - oo < c; < oo . 

Let z i = 

= 

2 -
aifk -

� � 
(Z 11, . . •  , Z tp)' and 
� 
L1 = (a iik ), given by I_: (H1i (x) -F1i (x)) J(F; (x)) dx 

00 00 J 
_oo 

J 
_oo

J (F;(u)) J(F;(v)) (min (F1i (u), F1k(v)-

F1; (u) F;k (v)) dudl1• 

The proof given in Padua (I 986) for the derivation of the asymptotic distribution 
of L� in the case of variable distributions, goes through for each component of 
L�. Thus we have the asymptotic representation of yn (L:, p.*) as 

(4) . . . 
1 

Vn l 



where 
,...., 
c = 

(5) .. . 
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(c1, ... , cp)'. We let 

1 � (f1) -+ 1: , as n � oo 
n 1 

1 0 1  

where � is a positive deftnite matrix. I t  is easy to see that Rao's condition (see 
Rao ( 1973), p. 14 7) for the application of the multivariate central limit theorem 
to the sum ( 4) is satisfied. Thus we have 

" Theorem 3. Let J be bounded and continuous a. e. F; -1 on [0, 1] and 
F� (x) � F; (x) for each x, as n -+ oo I j = 1, .. . , p.lf Propositions 1 *, 1 1  * and 
1 i 1 * are satisfied and (5) holds then yrr (L * - ,.t) � N (c, �), as n � oo .  

n 
The analogue of Theorem 2.5 in Padua ( 1986) for the multivariate distribution 
is given as follows. We omit the proof. 

Theorem 4. Let J be bounded and continuous a. e. F.- 1 qn [0, 1] , j = 1, 
... , p, such that J(u) = 0 for 0 < u <ex: and {3 < u < f. If F�(x) � F�(x) 
for each X , the ex: and {3 quantiles of rare uniquely defined, j = 11' . . .  I p, 1Pro­
positJ9ns 1 * and 1 1 1  * are satisfied ana (5) holds, then v'ii (L: - JJ.*) L N 
(c, �), as n � 00 • 

Component�wise Sample Median: The sample median is a special case of a 
univariate L-estimate, and is treated separately from the general case (see, for 
example, Lehmann (1983), Theorem 5.3.2) in the literature, for simplicity. We 
consider similarly the component-wise sample median which is a special case of a 
multivariate L-estimate. For simplicity we assume that n is an odd integer. Let 
X = (XJ I • • •  , Xp )'' where xi denotes the median value of X ljl . .. , x,,, j = 1' 
... , p. Let F;l and /;; denote the cdf and pdf, respectively, of x11 and for b = 

(b1, ... , hp) let !1 (b) = (fil (b;), ... , /tp (hp) )', F 1 (b) = (F11 (b;), ... , 
F1P (bp))' andFifk (b;, bk)=P{Xtj < b;,X;k < bk }· 

Let f2.;(b) = (vijk)' given by vljk = F1; (b1) (1-Fti (bf)) 
v,Jk = Fifk (b1, bk)- Ft; (bJ) F1k (bk). 

n 
Let w, ;:: (W11 , • . •  , W;p)' and S, = � W1, where 1 

{
= 

1 if Xij > b; I Vn 
Wt; 

0 otherwise, j = 1, ... , p. 
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Clearly 

(6) . .. 
n-1 

2 

where e = ( 1, 
"' 

. . . , 1)' and < means component-wise inequality, 

= 

n 1 1; F, (2) + _-1-(b* fi (Q)) + 0 (Yn) 1 v n 

where a*B = (a1 b1, ... , apbp)',J!, denotes a p-component null vector and 

n 

1; Ut (b 1-Vn 
I 

n 

1; n, (Q) + 0 (n). 
1 

It is assumed that the x1i have a continuous density at the origin. We make the 
following additional assumptions: As n --+ oo 

1 n 

Assumption 1. - 1; fi (Q) --+ f 
n 1 

where [is a bound length vector with positive components. 

1 n 

Assumption 2. - 1; n, (Q) --+ n 
n 1 

where n is a non-null matrix, and 

Assumption 3. 1 n n - (�) F, (Q) - - ,t) --+ (Q) . 
n 1 2 

By the multivariate central limit Theorem (see Rao ( 1973), p. 147) 

(7) . .. ..£.. Nco, n) 

under Assumption 2 .  If Assumptions 1 and 3 are satisfied then from (2.25) we have 
for large n 
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(8) .. . _ c - n-1 
P(vn X <b) == P(Sn < �2- e)  

Sn - E Sn n+l 
= p <- (} 

,..._, 

v-n 2vn 
1 

n 
Lb = [; (Q) 

n 1 

= p < b = f . 

Combining (7) and (8), we get 

103 

1 n 
+ -- L F; (0) + 

vn 1 

Theorem 5. If the x;i have a continuous density at the origin and Assumptions 
1, 2 and 3 are satisfied, t hen 

Vn X* = f � N (0, n, ), as n � oo 

We can rephrase Assumptions 1, 2 and 3 with reference to an arbitrary vector 
d in place of the null vector 0, and rephrase the given theorem accordingly, in an 
obvious manner. 

L-estimate of regression coefficients. The study of robust estimation is 
particularly important for the general regression problem. In  this regard Huber 
(1973) has no!ed that "just a single grossly outlying observation may spoil the 
least squares estimate, and moreover, outliers are much harder to spot in the 
regression than in the simple location case." Various types of robust estimates 
of the regression coefficients of a linear model have been considered in the lite­
rature. M--estimates of the regression coefficients have been considered by Anscom­
be (1967), Huber (1973) and Bickel (1975), among others. R-estimates of the 
regression coefficients have been considered by Adichie (1967), Jureckova (1971) 
and Maritz (1979). Some other types of robust estimates for the simple linear 
regression model have been proposed by Mood ( 1950), Theil ( 1950), Sen ( 1968) 
and Forsythe ( 1972). A type of M-estimate for the regression coefficients has been 
proposed by Koenker and Bassett (1978). 

Consider the l inear model 

(9) . . .  Y = X8 + € 

where Y is an n-dimensional vector of response variables, X is an nxp matrix 
non-stochastic variables, (} is a p-dimensional vector of the regression coefficients 
and € is an n-dimensional vector of errors. The components of E are i. id. random 
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variables. We partition X into m submatrices, according to the rows of X. Let X1 
denote the ith submatrix and let Y1 and €; denote the associated subvector of Y 
and €, respectively. We assume that each X1 is of rank p. Let 

= (X X;)-1 X. e; + 8 
r I 

denote the least squares estimate of 8, as obtained from the ith partition of (Y, X). 
Let 0;. denote �e jth co�onent of ff1 and let 0(11) < ... < lf(mj) denote the 
ordered valu�s of 8;1, ... , () mj· For a robust estimate of 8 consider a multivariate 
L-estimate 8 whose jth component is given by 

(1 0) ... 
" � "" 

ej = cl(J(l/) + ... +cke(mj) 
" 

where c1 are suitable constants. Sim_ele estim�es such as those for which 81 is a 
trimmed mean or a median value of 8 ;1, ... , Omf are particularly interesting. We 
considered the latter estimate for which 

( 1 1) ... 
" � "' 

ej = median (8 1/' ... ' emj). 

In many practical situations it is reasonable to assume that the components of 
€ in (9) are symmetricallt distributed about the origin. We shall make this assump­
tion here. Therefore, the 8 if are symmetrically distributed about the origin, j = 1, 

;...; . , p and i = I, ... , T· Denoting by F11 and [11 the cdf and density function of 
8 tf' we get Fi/ (0) = -2- . It can be generally assUJned that the matrix X and the 
error distribution are such that the assumptions of Theorem 4 are satisfied. It 
follows that 

� (0 - 8)* f k N (0, Q) as m � oo , where 

n is a positive defmite matrix whose diagonal elements are tach equal to -+- . 
We need to find the values off and n. Suppose that the rows of X are 

independently distributed according to a given distribution. Then given the com­
mon distribution of the components of €, we can empirically determine the values 

" 

off and Q by the Monte Carlo method, for example. To compare 8 with the least 
squares estimates we compare the covariances of the asymptotic distribution of 

" 1 n 
Oandtf = - � 8.. 

I ' m 1 

� where 8; is the least squar� estimate of 8, associated with the ith partition of X. 
In this regard we note that 8 i is distributed with mean 8 and covariance 
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where a2 denotes the common variance of the component of E. If the rows of X 
are generated from the normal distribution N@ , J!), then (x; X)-1 is distri­
buted according to the inverted Wishart distribution. Therefore, for large m 

1 m -- � (X.X;)-1 L 
m 1 ,, 

1 

= _
1 (� 

m 1 

m 

__ 1 _ ) y-1 
k;-p-1 

m � E(X X;)-1 
1 l 

where k; denotes the number of rows in the ith partition of X. It is assumed that 
k; > p + 2 for each i. If all the k; are nearly equal to k, say, then by the multi­
variate central limit theorem 

Vm (8 -8 hN (Q, 
k-p- 1 

asm � oo .  

Future Research 

Although the theory presented here is comprehensive, there are still some 
avenue�for future research in L-estimation. Some of the more important ones are 
as follows: 

1 .  Establish bounds for the error in normal approximation. Such bounds 
may be of the Berry-Esseen type which gives the maximum error that 
one may incur using the normal approximation. 

2. Develop software packages which will incorporate L estimates of loca­
tion parameters and regression coefficients. 

3. In the application to robust regression a theoretical research on the 
optimal block sizes is needed. Moreover, a theoretical research is also 
needed to see the effect of multicollinearity on the proposed regression 
estimates. 

These are but a few of the research directions which may interest an applied 
statistician or a mathematical statistician. 
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