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ABSTRACT 

If m, a. b are integers and m>O, we say that a is congruent to b ; modulo m, if 
and only if m is a divisor of a - b. In symbols, this is written as a == b (mod m). lt 
is well known, and easy to prove, that this relation is an equivalence relation in 
the integral domain Z of all integers. Furthermore, this equivalence relation in
duces cxtactly m :..quivalence classes, i.e. , it provides an m-partition of Z. 

I n  this paper, we extend the concept of congruence of the field Q of ration
al numbers, the smallest field containing Z. Let m be a positive integer and let r ,  
s E Q. We can always write r=a/b, s=c/d as  fractions in lowest terms. We definer 
r = s (mod m) if and only if m is a divisor of ad-be. It is clear that the restriction 
of this relation to Z is the usual congruence relation, and hence it is an extension 
of the usual concept of congruence. This study shows that this extended concept 
of congruence is an equivalence relation and that for a given modulus m>O, the 
corresponding number of equivalence classes is equal to mn( l +p-1),  where the 
product ranges over all prime divisors p of m. 

Introduction 

Consider the set Q = (<a, b>:b -=1= 0 and a, b are relatively prime integers). 
Each c lemen t <a, b>E Q may be associated with the rational number a/b. Conversely, 
if r is any rational number, then r = a/b for some <a, b> E Q. We may then look at 
Q as the field of real numbers by thinking of <a, b> as the rational number a/b. 

For convenience, we shall use consistently the following notations : 

Z The set o f  all integers. 
Q The set of rational numbers. 
al b  Ta divides b,  exactly. 
(a, b) : The greatest common divisor of a and b .  
[a ,  b] : The least common multiple of a and b.  
Let us recall one equivalence relation in Z. For each positive integer m, we 

say that a is congruent to b modulo m, if and only if ml(a-b ). In symbols, we write 
a =  b (mod m) if a is congruent to b modulo m, and a =!=  b (mod m), otherwise. The 
following definition extends this concept to the set Q. 
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Definition 1 .  Let m be a positive integer. In Q, we say that <a, b> is con

gruent to <c, d> modulo m if and onoy if mi(adbc), i. e . ,  ad = be (mod m). 
In symbols, we shall write <a, b> = <c, d> (mod m) if <a, b> is congruent 

to <b, c> modulo m. We shall also use the symbol =/= to denote non-congruence. 
This concept of congruence in Q will be of no general importance if it is not an 
equivalence relation. Our first task is to show that it is indeed an equivalence rela
tion in Q. We omit the proof of the following lemmas which we shall use in proving 
our assertion. 

Lemma 1 .  If a, b E  Z are not both zero, then (na, nb) = 1n l(a, b )  for all non-
zero n E Z. 

Lemma 2. If a, b E Z are not both zero, then [a, b) = i ab1/(a, b).  
Lemma 3.  I f  a,  b E  Z,  then (a, b) = (a+nb , b) for aU n E Z.  
Lemma 4.  If ax = ay (mod m),  then x = y (mod m/(a, m) ) .  
Lemma 5. I f  a E b (mod m) and a =  b (mod n), then a =  b (mod [m, n] ) .  
Lemma 6. If a = b (mod m), then (am , m) = (b , m). 
Lemma 7. The congruence ax = b (mod m) has a solution if and only if 

(a, m) = 1 .  
I t  is useful to note that the greatest common divisor of three integers, a, b, c, not 
all zero, is (a, b, c) = ( (a, b), c) = (a, (b , c ) ).  

Theorem 1 .  The relation <a, b> = <c, d> (mod m) is an equivalence relation 
in Q. 

Proof: The reflexive and symmetric. properties of the relation are trivial. To 
prove the transitivity, let <a, b> = <c, d> (mod m) and <c, d> = <e, f> (mod m). 
Then by definition. 

ad = be (mod m) ( 1 )  
c f  = d e  (mod m) (2) 

Multiply ( 1 )  by a, (2) by b, and add the results to get adf = bde (mod m). By 
Lemma 4, this implies that af = be (mod rn/(d, rn) ). Similarly, we can get from ( 1 )  
and (2) the result that af = be (mod m/(C, m )  ) .  Hence, af = be (mod [m/(d, m), 
m/(c, m)] ) in view of Lemma 5 .  Using Lemmas 1 and 2, it is not difficult to verify 
that (m/(d, m), m/(c, m) ] = m. Therefore, <a, b> = <e, f> (mod m). 

An upper Bound for the Number of Equivalence Classes 

For a fixed positive integer m, the congruence relation in Q partitions Q into 
mutually disjoint equivalence classes. The equivalence class containing <a, b>, de
noted by cl <a, b> iS the set of all <x, y> E Q such that <x, y> = <a, b> (mod m). 
We shall show that there are only a fmite number of equivalence classes induced by 
the relation congruence modulo m. 

Let m be a positive integer and <a, b> E Q. Let us divide each of a, b by m 
and express the results of division in the forms a = rna' + u, b = mb' + v, where 
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0 � u, v < m. Then a =  u (mod m) and b = v (mod m) and we immediately get av = 
bu (mod m). Let g = (u, v) and U' = u/g, v' = v/g. Then <u', v'> E Q and by Lemma 
4, av' = bu' (mod m/(g, m) ). Now, (g, m) = (u, v, m) = (u, (v, m) ) = (u, (b-mb', m) ) 
= (u, (b, m) ) = (u, (m b) ) =  ( (u, m), v) = ( (a-rna', m), b) = ( (a, m), b) = (a, m, b) 
= 1 . Here, we used Lemma 3. Therefore, <a, b> = <u', v'> (mod m). We have thus 
shown that for each <a, b> E Q, there exists <u', v'> E Q such that 0 � u', v' <m 
and <a, b> = <u' ,  v'> (mod m). The next theorem is a direct consequence of this 
result. 

Theorem 2. The number of equivalence classes induced by the relation con
gruence modulo m is finite and not greater than m2 . 

The Exact Number of Equivalence Classes 

We shall denote by O (m) the number of equivalence classes of the relation 
congruence modulo m. Theorem 2 states that O (m) � m2 . Here, we shall derive an 
exact expression for O (m). We shall prove some lemmas first. 

Lemma 8. If (a, b, c) = 1 and c =I= 0, then there exists an integer n such that 
(a+bn, c) = 1 .  

Proof: Take n = c/(a, c). Then it is not so difficult to check that (a+bn, c) 
= 1 . 

Lemma 9. Let m be a positive integer and <a, b> E Q. Then there exists 
<u, v> E Q such that <a, b> = <u, v> (mod m) and v is a positive divisor of m. 

Proof: Set v = (b, m ). Obviously, v is a positive divisor of m. Let b' = b/v and 
m' = m/v. By Lemma 7, the congruence b' x = a (mod m) has a solution since 
(b', m') = 1 .  lf u' is any solution, then u = u' + run' is also a solution for any integer 
n. Let g = (u', m' , v). From the congruence b' u' = a  (mod m') and Lemma 6 it fol
lows that (b ' u', m') = (a, m'). Since gl (u', m'), then gl(a, m') and consequently, gla. 
But glv and v = (b , m). Therefore, glb also. Hence g = 1 since (a, b) = 1 .  By Lemma 
7, there exists an integer n such that (u' + nm ' , v) = 1 .  Take u = u' + nm'. Then 
<u, v> E Q and b' u = a (mod m'). If we multiply this congruence by v, we get 
bu = av (mod m), and hence <a, b> = <u, v> (mod m). 

The next lemma is easy and its proof is omitted. 
Lemma 10. I f  <a1 , d1 >, <a2 , d2> E Q and d 1 , d2 are positive divis01s of m 

such that <a1 , d1 > = <a2 , d2> (mod, m), thn d 1 = d2 . 
In  view of Lemma 10 ,  if dl > d2 , . . .  , dt are all the positive divisor<: of  m and if 

ni denotes the maximum number of elements <a, di> E Q which are mutually in
congruent modulo m, then O(m) = n1 + n2 + . .  _ + nt - This is one way of computing 
for O(m). Another method is suggested by the next theorem. 

Theorem 3. If m, n E Z are positive and (m, n) = 1 ,  then O (mn) = O (m)O(n), 
i.e . ,  e is a multiplicative function. 

Proof: Let us first show that O (mn) � O(m)O(n). Let em � Q such that the 
elements of em are mutually incongruent modulo m and every element of Q is con
gruent to some element of em modulo m. Then em has exactly O(m) elements. In 
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Proof: I f = 1 ,  the product 11 is empty and hence equal to 1 .  I f  m > 1 ,  then 
O(m) = f iO(pe) where m = npe .  By the theorem, O(pe ) = PC + p�l = pe(l +p-1 ). 
Therefore, O (m) = n [pe( l +p·l )] = f lpCil( l +p·l ) = mll( l  +p-1 ). 

It should be noted that the construction of the set of all equivalence classes 
of the congruence relation in Q has been given implicitly in the proof of the last 
theorem. Note also the striking similarity between the formula for O(m) and that of 
Euler's totient O(m) = mll( l -p-1 ). 
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