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ABSTRACT 

In 1962, F. Harary proposed the following problem. Given a graph G of 
order n, how can its vertices be labeled with the positive integers 1, 2, ... , n such 
that the maximum difference between labels of adjacent vertices is a minimum? 

We shall use the term density to denote the minimum of the maximum 
difference between adjacent labels in a graph of order n whose vertices are labeled 
with 1, 2, ... , n In this paper, we give formulas for densities of some classes of 
graphs as a function of their orders. In genera~ lower and upper bounds of the 
density of a graph in terms of graph parameters other than order are obtained. 
A note on the behavior of density with respect to the maximum degree of a 
graph is also included. 

Introduction 

In. this study all graphs considered are fmite, undirected, loopless and without 
multiple edges. If G is a graph, V(G) denotes its vertex-set and E(G) denotes its 
edge-set. The graph G is written as the ordered pair G = <V(G), E(G». 

The symbol [xl denotes the greatest integer not exceeding x and the symbol 
[x) denotes the smallest integer not less than x. 

An integer /abel of a graph G is an assignment of distinct integers to the 
vertices of G. More formally, we define an integer label of G to be a one-to-one 
mapping X:V(G) ~ Z, where Z is the set of all integers. 

Let X be an integer label of a graph G, and let a, b € Z such that a ::/= O. 
We defme the mapping aX + b by (aX + b) (v) = aX(v).+ b v € V(G). The follow­
ing lemma is easy to prove. 

LEMMA 1. Let X be an integer label of a graph G and let a, b € Z such that 
a*" O. Then aX + b is also an integer label of G. 

Let X be an integer label of G. If c = [a, b) € E(G), we define the A-span of e 
to be the positive integer eA = ' X(a) - A(b )1. The divergence of A in G is define to 
be GA = max [ ~ : e € E(G») . Finally, we defme the density of G, denoted by 
peG), to be the minimum GA, as X ranges over ail the integer labels of G. We assume , 
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that G has positive size (number of edges) in the definitions of divergence and 
density. For convenience, we define the density of a graph having size zero to be 
zero. 

LEMMA 2. Let G be a graph. Then there exists an integer label A of G such 
that AIV(G» consists of consecutive integers and GA = p(G). 

Proof: Let </> be an integer label of G such that G</> = p(G). If vi' v2" .. , vn 
are the vertices of G, we may assume, without loss of generality, that </>(v 1) < </>(v2) 
< ... < </>(Vn). If 9'>(V(G» does not consist of consecutive integers, we shall show 
how to construct one which does. Assume that </>(vk) and cj>(vk) and </>( vk+ t> are not 
consecutive integers, and let the positive difference between them be t. Define 
the integer label </>' by </>' (vi) = </>( vi) if i $ k and </>' (vi) = </>( vi) - t + 1 otherwise. 
Obviously, the </>'-span of any edge is less than or equal to its ¢-span. Hence, the 
divergence of </>i is less than or equal to that of </>. But </> has the minimum diver­
gence. Therefore, </>' has the same divergence as </>. Note that </>'(vk) and </>'(vk+!) 
are consecutive integers already. This procedure may be repeated a sufficient num­
ber of times until we obtain the desired integer label A. 

Using Lemma 1, we easily deduce the following corollary. 
COROLLARY. If G is a graph of order n, then there exists an integer label 

A of G such that GA = p(G) and A(V(G» consists of 1, 2, ... , n. 
We define a natural integer /abel of a graph G of order n to be an integer label 

A such that GA = p(G) and A(V(G» consists of the integers 1,2, ... , n. 

This study deals mainly with the problem of finding natural integer labels 
of graphs - a problem proposed by Harary in 1962. 

LEMMA 3. Let G be a graph and H a subgraph of G. TIl en p(H) $ p(G). 
Proof: Let A be a natural integer label of G. Then the restriction AlB of A 

to H is an integer label of H whose divergence is less than or equal to p(G). It 
follows p(H) $ p(G). 

LEMMA 4. Let G be a graph whose connected components are G1• G2 , 

... , Gk . Then g(G) = max{ p(G j )}. 

Proof: Observe that if A is an integer label of a graph H, then the mapping 
A +b, where b is any integer, is also an integer label of H with the same divergence 
as A. Furthermore, if A(V(H» consists of consecutive integers, then (A + b )(V(H» 
also consists of consecutive in tegers. Let Al be a natural integer label of G \. In 
view of our observation, we can find an integer label A2 of G2 whose divergence is 
p(G2 ) and such that A2(V(G2» consists of consecu tive integers the smallest of 
which is equal to the order of G 1 plus I. We see therefore that integer labels Aj can 
be found such that the divergence of Ai is p(G j ) and that the union of all Ai(V(G j» 
is {I, 2, ... , n}, where n is the order of G. The mapping A whose restriction to 
Gi , for each i, is Ai is then an integer label of G whose divergence is equal to max { 
p(G i»). Therefore p(G) $ max (p(G j )}. Now, since each Gj is a subgraph of G, 
p(Gj) ~p(G). It follows that max {p(G j )} Sp(G). Therefore, p(G) = max{ p(Gj»). 

In view of the preceding lemma, we need to consider only the problem of 
finding natural integer labels of connected graphs. 
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The formulas in the next lemma are easy to derive. Part (d) may be establish-
ed with the help of the idea presented in the proof of Theorem 3. 

LEMMAS. 
(a) p(P n) = 
(b) p(Cn ) = 
(c) p(Kn) = 
(d) p(Km n = > . with m _ n. 

I for all paths P n with n ~ 2. 
2 for all cycles Cn with n ~ 3. 
n-1 for all complete graphs Kn with n ~ 2. 
[(m+l)/2] + n - I for all complete bipartite graphs Km , n 

COROLLARY. If G is a graph with maximum clique of order q, then p(G) ~ 
q-l. 

Proof: This follows from Lemma 3 and Lemma 5 (c). 
Note that this lower bound is attained by all paths of order greater than 2, 

and hence is a best possible lower bound. 

Bounds for density in terms of maximum degree or minimum degree 

THEOREM l. Let G be a graph with maximum degree /).. Then p(G) ~ 
[(/).+ I )/2] . 

Proof: Since G has maximum degree /). then G contains a subgraph isomor­
phic to Kl\' 1 whose density, by Lemma 5, is [(/).+1/2]. By Lemma 3 (d), p(G), 
~ 1(/).+1)/2). 

By Lemma 5 (c), the density of KI n is [(n+l)/2]. Since n is the maximum 
degree of this graph, we see that the lower 'bound given in Theorem 1 is best possIble. 

LEMMA 6. Let G be a graph of order n, v a vertex of G. and Ny = { X: X is 
a natural integer label of G with A(v)= n} . Then GA ~ deg(v) for each X € Ny. 

Proof: Let deg(v) = d and let vI' v2' ... , vd be all the neighbors of v. Let 
X € Nv and without loss of generality we assume that X(v) < A(v2) < ... < A(vd). 
Since X(v) = n, then A(vd) ~ n-l and XlvI) '$ n-d. Therefore the X-span of the edge 
[v, vI] is at least n-(n-d) = d. Therefore GA ~ d = deg(v). 

THEOREM 2. Let G be a graph with minimum degree a. Then p(G) ~ a. 

Proof: Let V(G) = { vI' v2' ... , vn } and let Ni = { X: X is a natural integer 
label of G such that A(vi) = n}. Then N = U Ni is the set of all natural integer labels 
of G. Now, p(G) = min{ GA: X € N J = min {min {G?o.: X € Ni }: i = 1. 2 •...• 
n } >- a. 

The compiemelJt of G, denoted by C, is the graph with vertex set V(G) 
and where two distinct vertices are adjacent if and only if they are not adjacent in 
G. 

COROLLAR Y 1. Let G be a graph with maximum degree ~ and minimum 
degree a. Then p(G) + p(C) ~ n-l-(~-a- ) 

Proof: The minimum degree of G is n-l-L\. Th us, applying Theorem 2, we 
get the desired result. 

If G is an r-regular graph, then a = L\ = r and we get the following corollary. 
COROLLARY 2. If G is a regular graph, then p(G)+(p(G) ~ n-l. 
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The lower bound for density given in Theorem 2 is also best possible since it 
is attained by the cycle Cn. In fact, if n > 3, the complement of the cycle en 
also attains the same lower bound, namely a ;;;:: n-3. 

Bound for density in terms of stability number 

THEOREM 3. Let G be a graph of order n and stability number o:(G). Then 
p(G)~ n -I - [0:(G)/2]. 

Proof: Let S be a maximum stable set in G, i.e., lSI = o:(G). Let X be any 
integer label of G such that X(V(G)) = {I, 2, ... , nJ and XeS) consists of the 
10:(G)/2] smallest labels and the [a(G)) largest labels, i.e .. X(G);;:: {I, 2, ... , 
[o:(G)/2]. n,n-I, ... ,n-[0:(G)/2]+I}. Then no edge can have a X-span of 
n-[a(G)/2] or more. Hence, peG)$' n-I-[0:(G)/2). 

The upper bound for density given in Theorem 3 is best possible since it is 
attained by the graph KIn-

THEOREM 4. Let G be a graph with stability number 0: and minimum 
degree a. Then peG) + peG) ~ 0: + a - I. 

Proof: Clearly. the complement of G contains a clique of order 0:. Hence, 
combining Theorem 2 and the Corollary to Lemma 5, we get the desired result. 

BOWld for density in terms of diameter 

LEMMA 7. Let P = xl X2 ... xk Xk + 1 be a path of length k and let X be an 
integer label of P such that X(x 1) ;;:; I, X(Xk + I) ;;:; nand 1 S X(xi) S n for each i. 
Then the divergence Px is at least [(n -I )/kl . 

Proof: For convenience, we let X(xi) ;;:; ai' In case <aj> is an increasing 
sequence, then the summation of all X-spans is n-l. Otherwise, we consider the 
maximal monotonic subsequences of <aj>; 

a 1 < a2 < ... < an 1 

anI> anI+) > . .. > an2 

an2 < an2+1 < ... < an3 

In this case, we see that the sum of all X-spans is (an 1 - al) + (anI - an2) + (a n3 -

an2) + ... + (an - anp )' Clearly, this quantity is greater than n - 1. Thus, in all 
cases, the average X-span is at least [(n-I )/k]. It follows that the maximum X-span 
is at least [(n-l)/k]. Consequently, the divergence is at least [(n-l)/k]. 



Gervacio, Minimizing the Difference of Adjacent Vertices 69 

THEOREM 5. Let G be a connected graph of order n and diameter d. Then 
p(G) ~ (n-l )/dJ . 

Proof: Let ~ be any natural integer label of G. Let u, v be the vertices with 
~(u) = 1 and ~(v) = n. Let P be any shortest path joining u and v. Then by Lemma 
7, there is an edge of P whose ~-span is at least [(n-l )/k] , where k is the length of 
P. But k ~ d since d is the maximum length of a path in G. Hence [(n-l)/k] 
~ [(n-l)/d]. It follows that p(G) ~ [(n-l)/d]. 

Observe that the lower bound for density in Theorem 5 is attained by the 
path P n(n> I), the cycle en (n>2). and the complete graph Kn(n> I). 

Further result 

This section aims to show that it is impossible to get an upper bound for 
density in terms of maximum degree only. Specifically, given a fixed £l > 2. a graph 
with maximum degree £l may have an arbitrarily large density. We will illustrate 
this for £l :: 3 by showing that given any positive integer N, there exists a graph G 
of maximum degree 3 whose density is greater than N. 

We define G 1 = K 1 3' Recursively, we define Gk as follows. Take as many 
mu tually disjoin t copies ~f K 1 2 as there are end vertices 0 f Gk -1 (k> 1). To 
each end vertex of Gk -1' attaCh the central vertex of one K 1, 2. The resulting 
graph is Gk . It is easy to see that Gk has diameter 2k and simple mathematical 
induction will show that it has order 3-2k - 2. As an example, the graph G4 is 
shown below. 

GRAPH G4 
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By Theorem 5, p(Gk ) ~ [(n-l)/2k] = [3(2k -l)/2k). Hence, given any integer 
N > 0, we choose k to be any integer which is greater than 2-ln(N)/ln(2). Then 
p(Gk ) ~ [3(sk - 1 )/2k] > N. 
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