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ABSTRACT 

This paper upgrades classical integration to deal 
with set-valued functions and probabilistic motion. The 
notions generalized integral, derivative and pulsation 
are introduced and applied to differential equations with 
plane oscillations. 

A formulation in Rn is developed and extended to 
Hilbert space and the Gaussian distribution is used to 
describe the structure of a wave packet as generalized 
pulsation with amplitude. It leads to a sharper form of 
the Heisenberg's uncertainty principle as conjugacy re­
lationship between probability density and diffusion. 

Path integration is likewise upgraded. 

1. Limits of Classical Integration 

Classical integration reached its apex w ith the introduction 
of the Lebesgue integral. All other integrals thereafter -- Hen­
stock, Denjoy, Stieltjes, etc. -- were minor improvements be­
cause they differed from the Lebesgue integral , at least in their 
known applications, only in a set of measure zero. None of them 
can solve the differential equations: 
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where m, n are positive integflrs, because the functions on the 
right side of those equations are not measurable in the neighbor­
hood of zero; in fact, they are set-valued there. We define their 
set-values by: 

(2) (a) {f(xl} =lim sinn1 /x and 
x-o + 

(b) {g(x)}:lim cosrn1 /xsin"l /x 
x-o + 

and denote them by 

respectively . In both cases, the limit sets are point-wise limits of 
sequences of arcs of the appropriate trigonometric curves. In the 
case of (3) (a) the graph is either of the segments [-1 , 11 and [0, 1], 
depending on whether n is odd or even (See Figure 1 when n is 
odd). 

But why are these integrals unable to solve ( 1)? 
In its most abstract form a classical integral is a function on 

the space of quadruples (B,X, f(x), m) where. B is a measurable 
subset of X, f is a function on X, and m is a measure on the 
measurable subsets of X. The measure is a function on sets and 
its composite with the integral is also a function on sets. {There 
is no loss of generality in taking f real-valued since if it is vector­
valued we do integration on its components) . This leaves f in 
the quadruple as the only function in the ordinary sense, i.e., 
single-valued. This is the fundamental limitation of the classical 
integral. That is why it cannot solve ( 1) because both functions 
on the right side are set-valued. 

2. The Generalized Integral, Derivative and Pulsation 

Given this fundamental weakness of the classical integral 
we now upgrade it by taking a leap to complete what was 
started by Lebesgue, namely, the extension of the integral to 
abstract spaces and its partial upgrading into a function on sets. 
This means replacing the single-valued function f(x) by a set­
valued function {f(x)} . Since in mathematics a set is uninterest­
ing and its elements, inessential, apart from their structures, w e 
take one more step: introduce some structure in the form of a 
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function on sets, namely, a probability distribution function Px 
(.)on {f(xl} such that at each x, Px (.)is a probability distribution 
on {f(x)} . [The subscript x in Px (.) means that Px (.) is the 
probability distribution of the set-value {f(x)} at x in the mapping 
x -{f(x)} defining this function and the dot in(.) is reserved for 
the dummy variable along {f(x)} for integrating this function.] 
Then we define a generalized integral as a function on the space 
of quintuples (m, B, X, {f(x)} , Px (.)) where 8 is a measurable 
subset of X, {f(x)} is a set-valued function on X and Px (.) is a 
probability function on f(x) . We require X to be Hansdorff to 
admit probability measure concentrated at a point . 

We do the formulation here for R11 and extend it to Hilbert 
space in Section 5. 

Let \' be a compact subset of R11 with the standard sub­
space topology and its Borel sets. Let I be an open bounded n­
cube with finite measure p(l), and containing Y, whose edges 
are parallel to corresponding coordinate axes. We partition I by 
a finite number of linear subspaces each of which is orthogonal 
to a coordinate axis so that, in effect, I is partitioned into n- di­
mensional rectangular blocks which we shall simple call blocks. 
Since we will be dealing here with probability measures includ­
ing measure concentrated at a single point, we do not want the 
blocks to overlap. And so we admit only partitions such that the 
boundary on the face of a block belongs to one and only one 
block. 

Suppose a block containing a point of Y has its boundary on 
two subspaces orthogonal to the Yi- axis, i = 1, 2, ... , n, and 
passing through the points (O, ... ,Yi,k,, .. . ,O) and 
(0, ... Yi,k + 1 , . .. ,0), where Yi,k < Yi,k + 1. We include in that block 
its boundary contained in the first subspace and exclude from it 
its boundary contained in the second subspace. The exception 
in each row of finite sequences of blocks induced by this or­
dered partitioning is the last one on the right whose boundary 
contained in the last bounding subspace we include in that 
block . Note that for any such partition the system of blocks cov­
ers Y and these blocks are non-overlapping. 

Let P be a partition of I. We define the norm I PI of P as the 
diameter of the largest block in the partition. If P1 is another par­
tition of I we define the product PP1 as the partition of I by both 
P and P1 _ We are interested in a sequence pi of finer partitions 
constructed in this manner suc h that IPi I -o as i - a. Sup-
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pose we take a block L\i l containing y E Y at a particular value 
of i and suppose for each j, j > i we take a block L\jl, L\jl ~ L\il . 
Suppose further that for each L\il we take a maximal Borel sub­
set Aiy of Y contained in L\il (and, naturally, containing y be­
cause of maximality). Then we have a nested sequence of 
blocks L\il and a sequence of maximal Borel sets L\iycontained 
in L\il for each i. Both sequences shrink to the point y as IP 11 
- O.Since L\iyS L\il and p(l) <a then the quotient P(L\iy)/P(L\il) is 
uniformly bounded by 0 and 1 and hence has a limit point. Since 
both I and Y are measurable, that limit is unique and inde­
pendent of the choice of partitions. We denote that limit by p(y) 
and call it a density or measure distribution of Y at y. In quantum 
mechanics this is called the probability density at that point 9. 
For small L\1, p{y) P( L\1) is an approximation t o p( L\y). We de­
note that number by dp(y). We w ill normalize p(y) later and call 
it a probability distribution. 

In the case where the measure a of a block AI is concen­
trated at the pointy, i.e. , p ( {y}) =a and the measure of the 
complement of {y} in AI is 0, then p(y} = 1 and dp(y) =a. 

Conversely, suppose we have a measure distribution on Y 
and let P be a partition of I. We form the sum of the measures 
of the blocks each of which contains an element of Y and call it 
an upper sum S w hich is bounded by the measure of I. We also 
take the sum of the measures of the maximal Borel sets in the 
blocks of the partition and call it a lower sum s. It is clear that 
for any partition P we have the inequality o :::; s :::; S. Again as IPI 
-0, sand S tend to some number k and, also, because of the 
measurability of both I and Y, that limit is unique. We call that 
limit the measure of Y which we denote by p(Y) . We express it 
as an integral: 

(3) p(Y) = s~ .dp (.) = k. 

We normalize the measure distribution p(y) by dividing it by 
k and ca ll it a probability or unit measure distribution on Y. In 
this case p is called a probability or unit measure of Y. 

Suppose we take a point y E Y in each block L\1 of a par­
tition and we att ach toy the measure p 1 L\y), i. e., w e mult iply 
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each component of y by p( Doy) where pis a unit measure on Y. 
We take the sum s among all blocks in the partition each of 
which contains a point of Y. This sum is uniformly bounded 
since Y is bounded and I has finite measure. This is a rough av­
erage of the elements of Y. We let the norm of the partition ap­
proach zero and since that sum is uniformly bounded it ap­
proaches a limit which, again, is independent of the partition. 
We call that limit the expectation point of Y and we denote it by: 

(4) E(Yl = f y (.)dp(.). 

We introduce an example of a generalized integral over an 
interval [a,b] in R -- a double integral defined by: 

{5) Gab ({f(xl}) = J:(( .)dpx( .))dx . 

The inner integral on the right side of {5) maps {f(x) } into 
the well-defined measurable expectation function E(x) on [a,b] so 
that the outer integral becomes an ordinary Lebesque integral. 

(There is no loss of generality in taking { f(x)} a plane set and 
E(x) real-valued since if E(x} is vector-valued we can do integration 
on the components.) Thus in the xy-plane the integral Q repre­
sents the area under the curve y = E(x) from x = a to x = b (See 
Figure 2) . If {f(xl} is single-valued and measurable then Px( .) is 
concentrated at the single point f(xl at each x. In this case E(x} 
= f(x) and the areas under the curves y = E(x). y = f(x} from x 
= a to x = b coincide. Then the generalized integral reduces tc 
a Lebesgue integral. Conversely, any Lebesgue integral can be 
expressed as a generalized integral. We state this as a theorem. 

Theorem. The Lebesgue integral is a generalized integral with 
suitable integrand and probability function. 

Proof. Let Jf(x)dx be any Lebesgue integral, i.e., f(x) is 
Lebesgue integrable, and let g(x} be any bounded measurable 
function on [a, b), where g(x} > 0. Denote by Ax the cross section 
of the area under the curve y == y(x), i.e. , the compact vertical 
segment joining (x,a) and (x,g(x)). Then the function {g(x)}:x - Ax, 
x E [a,b) is set-valued. Consider the set-valued function {h(x)} 
defined by: 
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{h(x)} = f(x)Ax: = {f(x) J..ll'J..L EAx}, x E [a,b], 

and let Px be a probability function on {Ax} such that at each x, 
Px is concentrated at the point (x,g(x)) . Then : 

161 Oabl{hlxi)J~J! s :lxl (.Jdpx(.Jidx ~ r: f(x)dx.# 
X 

We can also set up a generalized indefinite integral by re­
placing the upper limit b by x in (6) and using a dummy variable 
s. We can use it to solve a linear first order set-valued differen­
tial equation, 

(7) { y } = { f(x) } 

where we assume the Borel sets on each {f(xl}as well as a 
measurable probability function Px( .) on the function {f(x)} . If the 
initial condition is given by y(xo) = Yo then the solution is given 
by 

!Sl y(xl = Yo +f 1 rt.ldpx! .llds 
xo . j {f(xl} 

which reduces to the Lebesgue integral 

(9) y(x) = Yo + tE(s)ds. 

For well-defined derivative y = f(x) of an absolutely con­
tinuous function y = F(x), we have the relationship 

(1 Ol y(x) = Yo + Lvds 
or 

( 11) F(x) = F(x0 ) + Ct(x)dx and F' (x) = f(x) a.e. t 
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Note that the derivative of an ordinary indefinite integral is 
its integrand. We extend this idea to set-valued functions by, de­
fining a generalized derivative as the integrand of a generalized 
indefinite integral which is the expectation function. But, since 
that is the weighted average at each point x of the set-value of 
the integrand with respect to a probability distribution, differen­
tiation reconstructs a probability distribution even if it is not 
unique. We, therefore, consider two probability distributions 
that yield the same expectation point E(x) equivalent and the 
equivalence class determined by E(x) we define as the general­
ized derivative Px(.) of the set- valued function {f(xl} . Thus we 
are justified, on two counts, in the use of the dot notation Pxf .) 
for the probability distribution: by looking at Px(.) as a generali­
zation of the ordinary derivative and as the limit of the ratio of 
the measures of measurable subsets embedded in the nested 
sequence of blocks which is analogous to an ordinary deriva­
tive. And, of course, for single-valued function, the generalized 
derivative reduces to an ordinary derivative. 

Finally, in this section, we define ann-dimensional general­
ized pulsation as the limit of pulsation in the ordinary sense 
(rapid expansion and contraction) , as the latter becomes infi­
nitely rapid. In the plane, it is an oscillation such as sinn 1 /x. In 
the (n + 1) - space Rn x R a generalized pulsation is a compact 
subset of the subspace Rn orthogonal to R. We now drop the 
qualifier generalized for pulsation. Pulsation will refer both to 
the pulsation-valued function {f(xl} and its set-value at x. We 
describe the structure of a pulsation by a probability distribu­
tion. If {f(xl} is a pulsation we introduce a probability distribu­
tion function Px such that at each x, Px is a probability distribu­
tion on the set {f(x)} . If {f(x)} is a singleton at x we call x an 
ordinary point; otherwise we call it a pulsation point for {f(xl} . 
At an ordinary point x the probability function Px is concentrated 
at the point f(x) . If there is some interval [a,b] every point of 
which is a pulsation point of {f(xl} we call the latter a wild pul­
sation. 

3. Uncontrolled Probabilistic Motion 

The motion of a particle at great speed is, by definition, 
probabilistic since it is difficult to pinpoint its position. This is 
roughly expressed by the Heisenberg's uncertainty princ iple. 
For certain kinds of motion such as pulsation the calculation of 
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the probability distribution can be done by assuming what we 
shall call a pulsation probability principle which results in a 
sharper version of the Heisenberg 's uncertainty principle. 

We will apply our formulation to uncontrolled probabi listic 
motion, i.e., differential equation of motion with no control pa­
rameters. This means that the geometry of motion is deter­
mined by the nature of motion of that object, free from external 
intervention beyond the underlying electromagnetic field. 

The case of differential equation with control parameters 
has been formulated and solved by a number of mathematicians 
foremost among whom was L.C. Young (11 ). Young's ap­
proach utilizes unit measure distribution on a compact control 
set as probability weights for evaluating the expectation func­
tion of the set-valued differential equation of motion. Thus a 
measurable probability measure-valued control function, called 
chattering control, corresponding to our probability distribution 
function here, generates the solution of the differential equation 
which Young calls relaxed trajectory. 

An uncontrolled trajectory, according to the Filippov Lemna 
( 11) is a controlled trajectory. Conceivably, we can reconstruct 
a control set and a probability distribution on it that can serve as 
probability weights for finding the expectation point E(x) of the 
set-valued differential equation of motion. This is not very 
promising, however. Thus we attach instead a probability distri­
bution. function that acts on the set-values of the right side of 
the differential equation of motion, the set-values acting as 
counterparts to the control set, to find E(x) . That is the rationale 
for the formulation in Section 2. 

And since uncontrolled trajectories are also contro lled t ra­
jectories ( 11), all theorems about relaxed trajectories are valid 
for trajectories of uncontrolled probabilistic motion. 

4 . Application to Simple Oscillation 

We take on the more challenging case of 1 (a): n > 2 and n 
is even. The other cases are worked out in (2) . The idea is to use 
a wild oscillation to approximate {1) {a). We use the differential 
equation with wild oscillation: 

(12) 
{ y l = sinn 1/0x, 

where sinn 1/0x = lim0 1/ s-.x+s-x,- x E [- f' ,£') , 
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for some E.' > 0, to approximate (1) (a) near x = 0. We will later 
shrink £' to an approximate value. If Po!. I is the probability 
distribution on the set sinn 1/0 then we set up the approximating 
differential equation to {1) (a) and its corresponding probability 
distribution function as follows: 

(13) tvJ= 
xc[-£',£' ], 

x¢ [-t', E-'] 

and the probability distribution is defined by the probability 
function: 

{

Po(.) , 
(14) Px(.) 

sin" 1/ x 

X E [ -t',t'], 

X f_ [-t',£.'], 

which is clearly measurable. The second line of {14) means that 
the probability measure at each x ~ [- c; E'] is concentrated at 
the point sinn 1 /x and the probability distribution on the interval 
[- E', E'] is constant, i.e., at each x E [- E~ E'] the probability 
distribution on the oscillation there is equal to p0 (.). 

Now we calculate the probability distribution Po!.) using the 
geometry of the topologist's sine curve y = sinn 1 /x . We effect, 
in accordance with our general formulation above, a partition by 
closed-open non-overlapping intervals (the blocks reduce to in­
tervals on the segment) of the form [s, s + dy), the exception be­
ing the topmost segment of any partition which will be closed 
with the adjunction of the upper end-point of the oscillat ion at x 
= 0. We effect a change of variable w = 1 /x . This does not re­
produce the entire topologist's sine curve since w is not defined 
at x = 0. But we shall use the resulting function: 

{ 1 5) y = sin" w 

to approximate certain features of sinn1 /0 by a suitable subarc of 
{15) in some E'- neighborhood of x = 0. 



354 Transactions of the National Academy of Science and Technology 

Consider the geometry of ( 14) as shown in Figure 3. At any 
point W E [O, 7t] whose subtending arc on the unit circle has end 
point P', there is some point P whose ordinate is sinnw. 
If w E [ 7t , 2n ], its radius vector at Q ' will have a reflection P' 
on the upper semicircle and since n is even, sinnw will be the 
ordinate of some point P on the upper semicircle. As w in­
creases uniformly, i.e., dw/dt = constant, P oscillates back and 
forth from R to T along the upper semicircle and its projection y 
does so also along the vertical segment [0, 1] at x = 0. At the 
same time, the point (w, sinnw) traces an arc of the curve 
y = sinnw with uniform frequency. Increase dw/dt until a half­
arc . corresponding to half a period of length n/2 lies within an 
E' -neighborhood of x = 0. Keep dw/dt at that rate but ca librate 
w so that the half arc would correspond to the half period [0, 

n/2] and a full sweep of y along the oscillation AB (Figure 3). 
The point P has a projection y on both the approximating arc 
and the oscillation. Consider one sweep of y along the approxi­
mating arc. We ask: given a small segment [s, s + dy) (or [s, 
s + dy)) in some partition, what is the probability of finding y in 
there? If y stops momentarily in that segment, i.e., dy/dt = 0, 
we want that probability to be 1 . If y does not stop there and its 
average velocity is large then that probability must be small. 
Thus there is some conjugacy relationship between that prob­
ability and the speed of the oscillating point. We, therefore, as­
sume, as an axiom, what we call the oscillation probability prin­
ciple: the speed dy/dt represents the probability that the oscil­
lating pointy is not in the segment [s, s + dy} . If we denote that 
number by q, since it is a derivative and the probability that the 
oscillating point lies in [s, s + dy] by p, then, after normalizing q 
suitably so that its values lie between 0 and 1 , we must have: 

(16} p + q = 1 or p = 1-q 

We can look at p as the probability distribution along [0, 1) and q 
as the speed distribution. They are both relative values or 
distribution of the value 1 . Thus, division of p or q by a constant 
does not alter that distribution. 

We have, 

( 17) dy/dt = dy/dw · dw/dt· 
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Since dw/dt is constant, dy/dt is proportional to dy/dw. And we 
can replace dy/dt by dy/dw as the conjugate of p which we shall 
normalize. 

From (17) we have: 

dy/dw = nsin" ·1 wcosw. 

We normalize dy/dw by dividing it by its maximum an in the 
interval [0, n/2]. (A trivial calculation by differentiation yields 
an = Jii(n-1/n) n·1 12). 

Set 

and normalize p by dividing it by: 

(19) 

using the fact that the probability that the oscillating point y is in 
the segment [0 , 1) is 1. Then we obtain the normalized probability 
distribution: 

(20) p;; 2an / an 1T- 2 (1-n/an sin" -1 wcosw) . 

We now write the approximating differential equation and 
the corresponding probability distribution function : 

(21) 

(22) 

f Y 1 ;; {sin" 1 /Ox , 

sinn 1/ x , 

xE. [- e', £'], 

x¢ [-£', £.), 

Px (.) = 12an/an 1T- 2 (1- n/ansin" -1 wx coswx ), 

t sin" 1/x 

x e[ -£', £'] , 
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Since 

we can apply the generalized integral Q on sin" 1/0x subject 
to some initial condition y(xo} = yo : 

This integral can be computed by a trivial algorithm. It can be 
shown {2), (5) that, as expected, the expectation function of the 
set-valued function sinn 1 /Ox, x E [ - E', E'] is some number f3 which 
lies between 0 and 1. With the transformation effected by (23), 
the approximate differential equation becomes an ordinary differ­
ential equation: 

y = 
[ 

(!,, 

sin 11 1/x, 

X E. [ - £' I £ I ], 

X 4- [-£'I£' ]. 

We find, one at a time, the solutions in the intervals [ 0, E') 

[- E' , 0], x ~ E', x $ -E' and join together an absolutely continu­
ous solution. For the first interval we take y(O) = 0 as the initial 
condition to obtain: 

y(x) = J~ xds 
() 

P, X, X€ (0, f.']. 

With the same initial condition and using the symmetry of sin11 1/x 
with respect to they-axis we obtain another piece of the solution: 

y(x)= -8x, xE[-£' ,0] . 

X 

For the other parts of the solution, we note that (sin" 1 /s ds has 
J £.' 
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a least upper bound, say a , in x > E' . We choose, as initial 
condition, y ( E) = f3E < a for some small E, 0 < E < c: Hence, 
the solution for x > E is: 

y(x) = 13£. + }xsin" 1/ s ds. 
f 

Again, using symmetry with respect to they-axis, we obtain the 
full approximate solution to the differential equation: (1 ), 

P, X, 
K 

X E. [0, £ L 
{3e. + l sin" 1 /s ds, X? t I 

" f, 

(24) y(x) /3£ + s sm" 1 ds, X~-£, I 

X 
X 6 [- £ ,0]. -!3x, 

Its graph is shown in Figure 4. 

5. Application to Compound Oscillation 

We next apply our method to the differential equation 1 (b) . 
As before, we effect a change of variable w = 1 /x to obtain the 
approximating arcs of the functions 

The values of m and n affect the cycle of the compound oscillation 
as well as the shape of the graph of each of the factors of 1 (b). 
To illustrate our method we take the case m, n both even. (The 
other cases are taken up in (31. The relevant graphs are shown in 
Figure 4, where the f latness of the graphs at their maximum points 
and their steepness away from those points depend on the 
magnitudes of m and n. It can be shown that the function y = 
cosmwsinnw has a unique maximum at w = tan "1/n/m, has 
minimum at w = 0 , n /2 , and is strictly increasing and decreasing 
in the intervals [0, tan-1Jn/m] and [tan ·1Jn/m, rr/2], respectively. 
Thus a suboscillation which would have required a different 
analysis is ruled out. 
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Unless m = n, the function y = cosmwsinnw has no sym­
metry with respect to the vertical line w = tan -l Jnlm. The 
functions sinnw and cosmw have the same periodicity and, 
hence, a full cycle of their product is repeated at every interval 
of length n/2 corresponding to a full sweep of the oscillating 
pointy. (We assume the non-trivial case m "4= n}. 

We now calculate the probability distribution function for 
the right side of 1 (b) at x = 0. Note that the oscillating point y 
is the projection of a point tin arc C1 and a point r in arc C2 of 
the graph of y = cosmwsinnw. Therefore, the probability that y 
is in some small interval [s, s + dy) (or[s, s + dy]} is the sum of 
the probabilities that t and r are in the corresponding vertical in­
tervals dy at the arcs C1 and Cz, respectively, of the graphs of 
the product function. 

The calculation of these probability distributions is similar 
to that for the simple oscillation above. The reader is referred to 
[3] for detailed calculation and the solution of this problem for 
the other values of m and n. 

By differentiation we obtain the velocity functions for y = 
cosmwsinnw in the intervals [0, tan-1 jn/m] and [tan-1 jn!m, 
rr/2] which are given bv: 

(26) 

q
1 

(w) = ncosm+ 1wsinn·l w - mcosm -1 wsinn+1 w, wE [0, tan-
1
Jn/m 1, 

q2 (w) = mcosm-1 wsirf+1w-ncosm+l wsin n-l w, wE.[tan -1 Jntm], 

respectively. Let their maxima be amn and bmn, respectively . 
Then the normalized velocity functions are: 

(27) 

(w):;:1 /a (ncosm+1 wsinn-1 -mcosm-lwsinn+lw) wE [0 tan-1 /nlm] 
1 mn , ' , 

2 (w) = 1 /bmn (mcosm -1 wsinn+l w-ncosm+l wsinn -1 w), w€. [tan-'Nm, 1r 12] 

To simplify our notation, we write 
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(28) fq, (w) , 

./q(w) = 
0, 

w £. {0, tan·1 /n!m 1, 

w (:0 [tan·1/n!m, 1r 121, 

w £ [tan·Vn/m, 1r 121, 

w t=. [0, tan·1Jn/ m1 . 

The probability distribution for the compound oscillation AB is 
given by : 

which we normalize by dividing by the constant: 

(30) 

f tan·1 Jn!m 

a= J 
0
(1- ./q1 (w) )dw 

'Tr /2 

+ \ (1- ./q2 (w) )dw. 
J tan·1 rnrm 

Thus, the normalized probability distribution is given by: 

(31) p(w) = 1/a (2- ./q1 (w)- ./q2 (w) ). 

For our approximate differential equation we take: 

(32) { y l == 
X ' 

{ 

cosm 1 /Oxsinn 1/0 

cosm1 / xsin"1 /x, 

with probability distribution 

!
P (w), 

(33) P (wx) = 
cosm 1/x sin" 1/x I 

X € [- f 'I f: '] I 

X rt [-€', t 1 J I 

X€[-f
1

1 £ 1
] 1 

X~ (-f_' , ~·]. 

Applying the generalized integral Q with initial condition 
y(O) = 0 we obtain the solution in [0,£']: 
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(34) 

where lx = cosm 1 /Ox sinn 1 /Ox. From t he symmetry of the 
wild oscillation (32 } w ith respect to the y-axis and taking also 
the initial condition y(O) = 0 we obtain the solution of (32) 
in [- E' , 0}: 

(35) 

Outside these intervals the solutions are ordinary Lebesgue 
integrals subject to the initial conditions: 

(3 6) y(€) = t3£ andy (-f) =f3e, 

Where y = ~ is the constant expectation function of the w ild 
oscillation 

and E satisfies 0 < E < E' so chosen to obtain an absolutely 
continuous global solution of (32) as we did with our first 
application above. 

The full solution of (32), which is our approxtmate solution 
to 1 (b} form, n both even, is given by: 

)( 

(3£ + ~~osm 1 /s sinn 1 /s ds, 

(37 ) y(x) 
Ax, 

- {b x, 
-~ 

1% + ~ cosm 1/s sinn 1/s ds 
~ 

Its graph is shown in Figure 5. 

6. Application to Quantum Mechanics 

XE[E,o<>] 

X E. (0,€-] 

XG: [-€.,0), 

X E [ - 00, - £ ] . 

There is consensus among physicists that the motion of 
subatomic or elementary particles is probabilistic. The evi-
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dences are their great velocit ies, wave characteristics and some 
indeterminacy of certain measurements such as position and 
momentun as expressed by the Heisenberg's uncertainty princi­
ple. Therefore, there is va lidity in assuming that such motion is 
probabilistic and in using ordinary pulsation in Hilbert space, the 
setting for quantum mechanics today, to describe such motion. 
Pulsation at great rapidity propagates waves in all directions in­
cluding the direction of motion and is probabilistic at the same 
time. The frequency can be determined from the quantized na­
ture of energy state which we will go into later. 

We do some calculations on t he generalized pulsation to­
wards which the ordinary pulsation approaches. Physicists in­
troduced the notion of probability density, i.e., the limit of the 
probability of finding the particle in motion in an element of vol­
ume in H. We take the limit as that element shrinks to a point x 

(t) E H. We w ill call that limit the probability distribution at that 
point and denote it by G(x(t)). We introduce the notion of diffu­
sion as well, i.e. the rate of flow of the points in that element of 
volume. We shrink that volume to a point so that the rate of 
flow approaches instantaneous velocity. We call it velocity dis­
tribution. In an analogous manner (to osci llation), we assume 
that that is the limit of the probability that the particle in motion 
is not in that element of volume as that volume shrinks to a 
point . We call it the pulsation probability principle. Let us denote 
that limit by D(x(t)) and assume that it has been suitably nor­
malized so that its value lies between 0 and 1 . (This is possible 
since veloc ity is bounded, according to Relativity.) Then we 
have the conjugacy relationship 

G(x(t) ) + D (x (t) ) == 1 

w hich, along the direction of motion, is a sharper form of the 
Heisenberg 's uncertainty principle for pulsation since velocity is 
simply momentum divided by mass. (The Heisenberg's uncer­
tainty principle says that if ~x is the uncertainty in pinpointing the 
position of the particle and ~p the uncertainty in measuring 
momentum then ~x . ~p ~ h/2n, ~here h is the Planc k's constant). 

The probability distribution G describes the structure of t he 
pulsation which we take to be a wave packet with a probability 
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distribution 1 obtained by modifying the Gaussian distribution 
given by: 

(38) 

2 G (x (t)) = o( (t)e -13!tllxltl-'t'!tl I 

where x(t) is a variable point in the subspace H of HxR orthogonal 
to R, a(t) and f3!t) are positive real numbers, y (t) is the point at 
which G(x(t)) is maximum at timet and I I is a norm in H. There 
is no loss of generality in assuming H to be the space /2 of square 
summable sequences since this space is isomorphic to any Hilbert 
space (6). (The choice of the appropriate norm in H is left for t he 
physicist to decide to match empirical data; one possibility is the 

metric d(x, y) = { I(xi - Vi! 2} 
1

/2 . The function y(t) is determined 
L •1 

by the underlying electromagnetic field.) 

We modify (38) to describe a wave packet, by a sinusoidal 
amplitude to obtain the modified Gaussian distribution : 

(39) G (x (t)) = c1.. (t)sinn a- (t) e 

which describes the structure of a wave packet consisting of a 
wild pulsation, with an amplitude sinn cr(t) where cr > 0 deter­
mines the extent of a wave packet along the direction of motion 
and n is a positive integer. (The terms a., cr, f3 and 11 are 
introduced to obtain the desired properties of the wave packet, 
including extent and shape, to match empirical data.) 

The wave packet is the support for G which we assume to 
be bounded, invoking Relativity and compact by taking its clo­
sure. 

An ordinary path does not make sense here and in place of 
it we take the trace of the expectation point of the wave packet 
in motion. The quantized nature of energy state requires that 
this path be discrete, each point of which corresponds to an in-

1 This idea of Gaussian distribution I owe to the timely suggestion by Professor Dick 
Van Dulst of the University of Amsterdam. 
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tegral multiple of n/2. These points are the allowable positions 
of the particle in accordance with the quantized energy state re­
quirement. Between two consecutive observable poin~s we in­
terpret the probability measure, i.e., the integral of G, as the 
transition probability or the probability that the particle will jump 
from the first to the second point . 

Finally, we indicate how path integration can be carried out 
in this setting. 

At the subatomic level of matter and at great velocity we 
lose the amenities of smoothness and determinacy. Position 
and derivative tend to be set-valued. Even time becomes elu­
sive. 

Therefore we assume that the.derivative x is some set-val­
ued function g(t,.fl t, Gt ) where n t is the cross-section of the 
wave packet and Gt is the Gaussian distribution on n t at time 
t. We find the expectation point E(t,x) of g(t,..O. t, Gt) , 

where 

and 

(41 ) E (t,x) = f g (t, (.) ) d Gt (.). 
Ilt 

The differential equation of motion becomes: 

(42) x "" E (t,x) a.e. 

G(t} is included in th~ argument of (40) only as a matter of 
notation to indicate that G is the probability distribution on.O.t. 

We shall not go into the requirement on g to insure exist­
ence of solution subject to some initial condition; we simply as­
sume that E is Lipschitzian in x to insure uniqueness. Let L(t,C2t, 
Gt) be the set-valued Lagrangian subject to the same conditions 
as g and let its expectation point at timet be denoted by L(t, x) . 
Since the dimensionality of the problem is at our disposal, we 
can adjoin in (42} the differential equation: 
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(43) x0 = L (t,x) 

to obtain the differential equation: 

(44) z = (>(0 ,)<} = (L (t, x), E (t, x)) a.e. 

Subject to some initial condition z( t 0 ) "" z0 and suitable 
conditions on g(2), (48) has a unique solution which is called a 
gener-:iized curve. The path integral from t1 to t2 reduces to the 
difference x0 !t2l - Xo(t1), where x0 (t) is the first component of 
the solution of (44). 

If the path integral is a minimization problem (an optimiza­
tion problem can be reduced to a minimization problem). then it 
reduces to the minimum of x0 (t 2) - x0 {t1), which, by a simple 
translation of the origin of the coordinate system to Xolt1), fur­
ther reduces to the minimum of xo(t2). 

Note that in this formulation, Gt is the generalized deriva­
tive. of n t and.n tis the compact support of Gt which coincides 
with the wave packet. The path integral is taken along the ex­
pectation .curve z(t) whose derivative is a generalized derivative 
given by G(z{t)). 

There are many interesting properties of the solution z(t ) of 
(44) one of which being that it can be approximated by an ordi­
nary simplicial path ( 11 ). 
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Figure 3. 

Figure 4 . 

Figure 5. 
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