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ABSTRACT 

Blum. et. al. {J J presented a selection algorithm that finds the kth smallest 
element oj a set with n distinct elements using 5.4305n comparisons in the worst 
case. In this paper. we present an improvement oj this algorithm that requires 
5.3975n comparisons in the worst case. The contribution oj this paper is not on 
the amount oj improvement but rather on the result that the worst case oj the 
best practical algorithm Jor selection can still be improved. Thus. opening the 
possibility oj Jurther closing the gap between the best practical worst case and 
the best theoretical worst case Jor selection. 
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INTRODUCIlON 

Blum, et. al. [1973] presented an algorithm for selection that requires 5.4305n 
comparisons in the worst case. This was improved by Schonhage, et. al. [1976] by 
presenting an algorithm that requires asymptotic to 3n comparisons in the worst 
case. Unfortunately, the algorithm presented in [4] is much more difficult to implement 
than the one in [Blum et al. 1973]. From the practical point of view, therefore, the 
algorithms of Blum. et. al. [1973] remain the best. 

One of the algorithms in [Blum et al. 1973] (called PICK I) is known to perform 
well as the number of elements discarded increases. In this paper, we present a new 
algorithm called LOCATE, that behaves in the opposite direction, i.e., the algorithm 
performs well as the number of elements that can be discarded decreases. By 
combining these two algorithms, an algorithm that requires 5.4137n comparisons is 
produced. Further refinement reduces this value to 5.3975n comparisons. 
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Notations 

For convenience, the notations used in [Blum et al. 1973] will be adopted in 
this paper. Given a set S of n distinct elements, k9S is the kth smallest element of S, 1 

xpS is equal to the rank of x in S. But by arguments of symmetry, the algorithms in 
this paper assume that l,!i k.~.Jnlil. The small letter c will consistently be used to 
represent the size of the columns used in the algorithms presented in this paper 
and h (c) is the cost of sorting a c-column. The term 'c-column' refers to a column 
with c elements and the term 'c-sorted' refers to a c-column that is sorted in as
cending order. All sorting steps involved in the algorithms arrange the elements of 
the set in ascending order and are carried out using the sorting algorithm in [Ford 
and Johnson 1959]. Further, it should be noted that in the succeeding sections, 
perfonnance or running time or cost is measured in tenns of number of compari
sons. 

Blum's et. al. Selection Algorithms 

The most important contributions of their algorithms are the establishment 
that the selection can be done in linear time. These algorithms are similar with 
Hoare's selection algorithm (FIND (Hoare 1961 )] except that the algorithms ensure 
that in every iteration about 'lc of the total number of elements being considered are 
discarded. This somehow explains the reason why the worst case running times of 
the algorithms are linear. 

Their best algorithm, called Pl CK I, starts by dividing the input into c-col
umns which are then c-sorted. In the succeeding iterations, the retained elements 
are restored to c-sorted columns by merging. This means that the columns are c
sorted only once which explains the cost of 5.4305n comparisons. Since PICK I will 
be used as a basis of some improvements to be given later, a slightly reformatted 
version of it will be given below. 

Unknown >m 

0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 
0 0 A 0 0 0 G 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 m 0 0 0 0 -T 

0 0 0 0 o ' o 0 0 0 
0 0 L 0 0 0 8 0 0 
0 0 0 0 0 0 0 0 0 

<m Unknown 

Figure I. Division of Elements in PICK! 
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Algorithm: PICKl 

Comment: Selects keS, where lSI = n and Is k s r nl2l. 

I. Ifn s 45, sort S, print keS, and halt. 
2. Arrange S intor nlI5lcolumns oflength 15, and sort each column. 
3. Use PICKla to select keS. 

Algorithm: PICKla 

Comment: Selects ke S, where lSI = n and IS k s r n/21 and the set Sand Tare 
already 15-sorted. 

\. Ifn S 45, sort S, print keS, and halt. 
2. Arrange T, the set of column medians (Figure I), intofn/2251 columns of 

length 15, and sort each column. 
3. Use PICK I b to select keS. 

Algorithm: PICKl b 

Comment: Selects keS, where lSI = n and Irs kl nl2 , and the sets Sand Tare 
already 15-sorted. 

I. Select m= rlTI121 e T using PICK I a, where Tis the set 0 fall c-column medians. 
2. Compute mpS, by partitioning (A U B) of Figure I about m as follows, stop

ping as soon as it becomes apparent that mpS < k or mpS > k. 

(a) Insert m into each column of B using binary insertion. 
(b) Insert m into each column of A using linear search technique beginning 

near the median of the original column. 

3. Apply the discard and restore procedure. 
4. Decrease n by the number of elements discarded. Ifn S 45, sort S, print keS 

and halt, otherwise return to Step I. 

Algorithm: Discard and Restore - PICK) 

I. If mpS = k, halt. Otherwise, if mpS>k, then discard G U {x I x E B 1\ X > m } • else 
discard L U {x I x E A 1\ X > m} and decrease k by the number of elements 
discarded. 

2. Restore S to a set of 15-columns. 
3. Restore T to a set of 15-columns. 

Let Pb(n), Pa(n) and P(n) be the costs of algorithms PICKlb, PICKla, and 
PICKI, respectively. These costs were shown in [I] to assume the values 
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Proof: For every pair of c-columns affected by the discard operation, exactly 
c elements are discarded. Since there are n/4c pairs of affected c-columns, therefore 
a total of c(n/4c)=n/4 elements are discarded. 0 

New Selection Algorithm 

Using the simple discard and restore procedure outlined in the previous 
section, an algorithm that performs well as d decreases can be constructed. The 
outline of the algorithm is exactly the same as that ofPICKl, except for the discard 
and restore procedure. An outline is given below. 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

A' o i 0 0 G' 0 
0 ' 0 0 
0 m 0 +-- T 

0 0 0 
L' 0 0 0 8' 

0 0 0 0 0 

Figure 2. Divisions of Elements in LOCATE. 

Algorithm: LOCATE 

Comment: Exactly the same as PICK I, except that Step 3 uses LOCA TEa. 

Algorithm: LOCA TEa 

Comment: Exactly the same as PICK Ia, except that Step 3 uses LOCATEb. 

Algorithm: LOCA TEb 

Comment: Exactly the same as PICK I b, except that Step 3 uses LOCA TEa and 
discard and restore procedure given below. 

Algorithm: Discard and Restore-LOCATE 

I. IfmpS = k, halt. Otherwise ifmpS > k, then discard D
8

, else discard D1 and 
update k. 

2 Restore S to a set of c-columns as follows: 
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2. Restore S to a set of c-columns as follows: 

(a) The c-column medians form Lc/4J-sorted and (Lc/~ + I )-sorted columns 
since they were discarded in that form in Step I of LOCA TEb. This 
means that Lc/2J pairs, i.e., L(L c/2J +1 )/2J and LLc/2JI2Jpairs from those 
whose medians are (Lc/2J + I )-sorted and Lc/2J-sorted, respectively, from 
out of c affected columns can be merged immediately using the method 
outlined in the previous section. 

(b) Combine the extra columns and merge everyLc/2J-column with a 
(lc/2J+I)-column.1t should be made sure, however, that Y2 of the extra 
columns are LcI2J -columns and the other half are (lc/2J + I)-columns. 
This arrangement can be done easily. 

3. Restore T to a set of c-columns similarly. Let ZCT be those column medians 
which were column medians in Step I of LOCA TEb. 

(a) Since the elements of Z are arranged in Lc/2.J -sorted and (LcI2J + 1)
sorted columns (elements of Z were discarded in that form when m was 
computed in Step I of LOCATEb), restoring Z can therefore be done by 
simply merging every.. c/2J -sorted column with a ~c/2.J+ I )-sorted column. 

(b) Restore the new medians, which were computed after the restoration of 
S, by sorting them into c-columns. 

Lemma 2. The cost of restoring S is (c-2)«c-I)/c)(n/4c) + (c-I)(l/c)(n/4c) 
comparisons. 

Proof: The discard operation leaves «c-I )/c)(n/4c) pairs of adjacent Lc/2J -
and (lcI2J+l)-columns. Hence, they can be merged using (c-2)«c-I)/c(n/4c) 
comparisons. The unknown columns, whose number is (l/c)(n/2c) and which are 
composed also of Lc/2J - and (Lc/2J+I)-columns can be restored using (c-l)( IIc)(n/ 
4c) comparisons. 0 

Lemma 3. The cost of restoring T is (c-I)(n/4c)(1/c)+h(c)(n/4c)(l/c) 
comparisons, where h( c ) is the cost of c-sorting. 

Proof: The restoration of Zc T can be done using the method used to restore 
S. Since IZI= n/2c, therefore there are (n/4c) (lIc) Lc/2J-sorted columns in Z. The 
same number of (L c/2J + 1 )-sorted columns is present. Hence, Z can be restored to 
c-columns in (c-I)(n/4c)(l/c) comparisons. The set of new medians, whose number 
is n/4c, can be c-sorted using h(c)(n/4c)(lIc) comparisons. ) 

The costs of LOCATE, LOCA TEa, and LOCA TEb, which are denoted by 
L(n), La(n), and Lb(n), respectively, can be described by the following recurrence 
relations: 



r 
L(n) S nh(c)/c + La(n) 
La(n) S nh(c)/c2 + Lb(n) 

Lb(n) S La(fnlcl) 
+ (nog d.cI2J+ 1~) (n/2c) 
+ (n/2x + d) 
+ (c-2)« c-I )/c)(n/4c) 
+ (c-I)(I Ic)(n/4c) 
+ (c-I)(n/4c)(I/c) 
+ h(c)(nl4c)( I/c) 
+ Lb(3n/4) 
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Cost of LOCATE. 
Cost of LOCA TEa. 
Cost of LOCA TEb. 
Computem. 
Insert minto B. 
Insert m into A. 
Restore S. Step 2a. 
Restore S. Step 2b. 
Restore S. Step 3a. 
Restore T. Step 3b. 
Cost of succeeding iterations. 

Given c= 15, the recurrence relations simplify to the following: 

L(n) S42n/15 + La(n) 
La(n) S 42n/225 + Lb(n) 
Lb(n) S (60/11 )(479n/1125 + d). 

The algorithm assumes its best performance when d=O, where 

Lb(n) :::; 2.3224n 
La(n) :::;2.509In 
L(n) S 5.3091n 

The worst performance, on the other hand, occurs when 6n/30 £ 7n/30, where 

Lb(n) S 3.4133n 
La(n) S 3.50oon 
L(n) S 6.4000n. 

However, the optimum value of cis c=21, where L(n) £ 5.2773n when d = 0 and L(n) 
S 6.3361 n when 6n/30 S d :::; 7n/30. Hence, the following theorem is proven: 

Theorem 1. There is a selection algorithm that requires 5.2773n comparisons 
when d = 0 and requires 6.3361 n when d = 7n/30. 

We have, therefore, shown the existence of an algorithm whose behaviour is 
opposite to that of PICK I as d increases. 

An Improvement 

Let d be as described before. As noted earlier, PICK I performs well as d 
increases while LOCATE performs .. ell as d increases. By combining these two 
algorithms, the worst case of 5.4305 (due to PICKI) can be reduced to a new value 
of5.4137n. 
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Let v be the value of d where the performances of PICK I and LOCATE are equal. A 
new and better worst case is set by computing for d,. if d ~ n then apply the 
discard and restore procedure of LOCATE, otherwise use the discard and restore 
procedure of PICK I. An algorithm, called LOCATE I , employing this observation is 
given below. The constant d and v are as defined above. 

Algorithm: LOCA TEl 

Comment: Exactly the same as PICK I, except that Step 3 uses LOCATE I a. 

Algorithm: LOCATEla 

Comment: Exactly the same as PICK I a, except that Step 3 uses LOCATE lb. 

Algorithm: LOCATElb 

Comment: Selects k9S, where lSI = n and I ~ k ~ n, and the sets Sand Tare 
already c-sorted. 

I. Select m = flTl/i] 9T using LOCATE I a, where Tis the set 0 fall c-column 
medians. 

2. Compute mpS, by partitioning (AUB) of Figure I about m as follows, stopping 
as soon as it becomes apparent that mpS < k or mpS > k. 

(a) Insert m into each column of B using binary insertion. 
(b) Insert m into each column of A using linear search technique, the search 

starts at elements near the medians of the c-columns. 

3. If d > v, then use the discard and restore procedure of PICK I. Otherwise, use 
the discard and restore procedure of LOCATE. 

4. Decrease n by the number of elements discarded. If n ~ 45, sort S, print kOS 
and halt, otherwise return to Step I. 

Let LI(n), L1a(n), and L1b(n) be the costs of LOCATEI, LOCATEla, and 
L OCATEI b, respectively. Since the performance of the algorithm is optimum when 
c = 15, in order to simplify the succeeding discussions, c will be set to this value. 

When d > v, obviously LOCATEI reduces to PICK\. Hence, the cost of 
LOCATE I is given by the following: 

LI b(n) ~ (5n/(n + 5d)( 13 197n/27000 + 3546d11575) 
Lla(n) ~ 42n1225 + Ll b(n) 
L1(n) ~ 42n115 + L1a(n). 

On the other hand, when d ~ v, LOCATE I reduces to LOCATE. Hence, the cost of 
LOCATE I is given by the following: 



L1b(n) ::s (60/IlX479n/1125+d) 
Lla(n) ::s 42n1225 + Llb(n) 
Ll(n) ::s 42n115 + L1a(n). 

The critical value is equal to the value of d in the equation 
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(60/11 )(479n11125 + d) = (5n1(n+ 5d))(13 I 97n127000 + 3546d11575). 

Simplifying the equation will result to d = v = 0.0 1918n where with this value of d 
LI (n) simplifies to L3(n) ~ 5.4137n. Since max(h(s)/s) < 5.4137n when s ::s 45, the 
induction is justified Clearly, this value is an improvement to the algorithm in [I]. 

Hence, the following theorem can be stated: 

Theorem 2. There is a selection algorithm that requires 5.4137n comparisons 
in the worst case. 

Further Improvement 

Let I A be the number of elements in A which are less than m. The relationship 
between I A and d is given by the following lemma: 

Lemma 4. I A ::s d. 

Proof: Two cases must be considered, either L or G is discarded. 

Case 1. IfL is discarded. clearly d = IA. Hence, the lemma holds. 
Case 2. IfG is discarded. then 

From the leftmost and rightmost terms, gB::s I A. Since d = ga, I A ::s d follows. 0 

Since I A ::s d, Steps 2a and 2b of PICK I b, i.e., the insertion of minto 8 using 
binary insertion and the insertion of m into A using sequential search technique, 
can be performed in any order without changing the cost of PI CK I b as a whole. 
The lemma also implies that the performance of PICK I improves as the size of I A 

increases. 
Using the approach used in LOCATE 1, we can improve the worst case by 

finding an algorithm that performs well as the value of IA decreases. One such 
algorithm is obtained by making a slight modification an Step 2 of LOCATE lb. The 
said modification is incorporated into the algorithm below. This time v stands for 
the value of IA where the performances of PICK I and LOCATE match. 

Algorithm: LOCA TE2 
" 

Comment: Exactly the same as PICK I, except that Step 3 uses LOCA TE2a. 
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Algorithm: LOCATE2a 

Comment: Exactly the same as PICK la, except that Step 3 uses LOCATE2b. 

Algorithm: LOCA TE2b 

Comment: Selects kaS, where lSI = n and Is k s n, and the sets Sand Tare 
already c-sorted. 

I. Select m = fiTll21 aT using LOCATE2a, where T is the set of all c-column 
medians. 

2. Compute mpS, by partitioning (A I U B) of Figure I about m as follows, stopping 
as soon as it becomes apparent that mpS < k or mpS > k 

(a) Insert m into each column of A using linear search technique, the search 
starts at elements near the medians of the c-columns. 

(b) If I A ~ v then insert m into each column of 8, using binary search 
technique. Otherwise, insert m into each column of 8 using linear search 
technique, starting form the elements next to the medians of the c
columns, stopping when the number of elements greater than m counted 
so far is equal to (I A + I) or when 8 runs out of elements greater than 
m, whichever comes first. 

3. If I A ~ v then use the discard and restore procedure of PIC K I. Otherwise, 
usc the discard and restore procedure of LOCATE. 

4. Decrease n by the number of elements discarded. Ifn ~ 45, sort S, print kqS 
and halt, otherwise return to Step I. 

To simplify the discussion, let c assume its optimum value which is c = 15. 
Let L2(n), L2a(n), and L2b(n) be the costs of LOCATE2, LOCATE2a, and LOCATE2b. 
respectively. 

When I A ~ v, obviously LOCATE2 reduces to PICK I (Lemma 4). Hence, the 
cost of LOCA TE2 is given by the following recurrence relations: 

L2b(n) 
L2a(n) 
L2(n) 

s (5n/(n + 51 A»)(I3 I 97n127000 + 35461 A/1575) 
S 42n/225 + L2b(n) 
s 42n/I5 + L2a(n) 

However, when I A < v the cost is the same as that of LOCATE I except for Step 2 
of LOCA TE2b. 

Lemma 5. The cost of Step 2 of LOCA TE2b when I A < v is 2(n/30 + I A)' 

Proof: Step 2a of LOCATE2b obviously needs one comparison per column 
plus the number of clements in A which are less than m. Hence, a cost of (n/30 + 
I A)' With regards to Step 2b of LOCATE2b, two cases must be considered. The 
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'first is when g8 > I A where g8 is the number of elements in 8 which are greater 
than m. Clearly, this costs (n/30 + I A). The second case is when g8 2: I A• where the 
cost is less than (n/30 + I A). Therefore, Step 2 of LOCATE2b costs 2(n/30 +I). 0 

With this step settled, the cost of LOCA TE2b when I A < v can be written as 
follows: 

L2b(n) !5; L2a(l n/151) Select m. 
+ 2(n/30 + I A) Compute mrS. 
+ 13(14/15)(n/60) Restore S. Step 2a. 
+ 14( I /15)(n/60) Restore S. Step 2b. 
+ 14(n/60X1115) Restore T. Step 3a. 
+ 42(n/60)(1/15) Restore T. Step 3b. 
+ L2b(3n/4) Cost of succeeding iterations. 

This recurrence relation simplifies to L2b(n) !5; (60/11)(404n/1125 + 21 A). The critical 
value v is equal to the value of I AA in the equation 

(60/11 )(404n/1125 + 21 A)= (5n/(n+51 A))(l3197n/27000 + 35461 A/1575). 

Simplifying the equation will result to I A= v = 0.04144n where with this value of I A 
L2(n) simplifies to L2(n) !5; 5.3975n. Clearly, this value is an improvement to the 
previous algorithm. Figure 3 shows the performance of LOCA TE2 (line below the 
intersection) on different values of I A• where 0 !5; I A !5; 7n/30. The theorem below 
follows: 

Theorem 3. The selection problem can be solved using 5.3975n comparisons 
in the worst case. 
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Figure 3. Performance of PICK I and LOCATE. 
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