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ABSTRACf 

The construction oJ new and powerJul invariants oJ knots and links by 
Vaughan Jones in 1984 and its recent generalizations have led to the discovery 
oJ important connections between the theory oJ knots and other branches oJ 
mathematics and sciences. The new knot theolY has already been useJul to 
molecular biologi.~ts studying the double helices oJ DNA. In physics. models in 
statistical mechanics may be defined on a knot or link diagram so that a 
.fuitable variation oJ the partition Junction oJ the system is often a knot invariant. 
In 1989. Jones constructed spin models and posed the challenge oJ investigating 
combinatorial structures Jor sources oJ spin models. In this paper we present an 
approach. first observed by Francois Jaeger in 1992, to the study oJ spin models 
using a combinatorial object called an association scheme. We outline the 
background and method oJ this approach and prove several characterization 
theorems Jor spin models arising Jrom some Jamilies oJ association schemes. 

Keywords and phrases: association schemes, spin models, knots, links, 
combinatorics, statistical mechanics. 

INTRODUcnON 

In a 1989 seminal paper, Vaughan F. R Jones introduced the concept of a 
spin model as a method to construct invariants of links in 3-space (Jones, 1989). 
The starting point of this new era in the study of knots and links was Jones' 
discovery in 1984 of his famous polynomial invariant, which was obtained in an 
entirely different setting, and for which he was awarded the 1990 Fields Medal. 
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Jones pursued the connection between knot theory and statistical mechanics 
via the use of spin models. The spin models he discovered can be defined as pairs 
(W +, W J of square complex matrices satisfyil!g certain invariance equations, which 
then guarantee that the partition function (after an adequate normalization) defines 
a link invariant. Spin models are used to understand, for instance, phase transitions 
in statistical mechanics. 

Since then the subject has been shown to be related to an amazingly wide 
variety of subjects such as von Neumann algebras, representations of semi-simple 
Lie algebras, finite groups, and more generally, statistical mechanics, topological 
field theory, quantum groups, among others. For instance, see (Jones, 1989), (Jaeger, 
1992), (de la Harpe-Jones, 1993) and (Jaeger, 1995). 

A major focus of Jones' work was directed towards the combinatorial aspect 
of the study and he posed the challenge of investigating combinatorial structures 
for sources of spin models. In his paper, Jones gave two examples of symmetric 
spin models and raised the question of finding new ones. 

In 1992, Francois Jaeger found new spin models for evaluation of the Kauffman 
lin polynomial invariant using special association schemes (Jaeger, 1992). Associa­
tion schemes are important combinatorial structures and are the main objects of 
study in algebraic combinatorics. They provide a unifying approach to the study of 
various mathematical objects such as algebraic graphs, codes, designs, finite 
geometries, and includes the theory of finite groups. 

Indeed the question of finding new spin models has turned out to be inti­
mately connected with the theory of association schemes. Many subsequent works, 
e.g. (Bannai-Bannai, 1993), (Nomura, (994), (Jaeger, 1995), and (Bannai-Bannai, 1995), 
confirmed the importance of the following situation: the matrices of a spin model 
belong to the Bose-Mesner algebra of some self-dual association scheme, and can 
be obtained by solving a certain modular invariance equation associated with the 
character table of the scheme. 

The simplest case is that of the Potts model for the Jones polynomial, which 
can be thought of as arising from the I-class association schemes, i.e. complete 
graphs. We describe the model later using the language of association schemes. 

Important work is now directed at showing that the connections between 
spin models, including subsequent generalizations like non-symmetric models and 
four-weight models by (Bannai-Bannai, 1993), (Kawagoe-Munemasa-Watatani, 1994) 
and (Bannai-Bannai, 1995), and the theory of association schemes is indeed general 
and non-arbitrary. A goal of this research direction is to obtain a classification of 
spin models in terms of association schemes. 

This paper provides the background and methods of this combinatorial ap­
proach to the study of spin models. We also give a direct proof of the characterization 
of (generalized) spin models arising from non-symmetric conference graphs. This 
continues the author's work in (Balmaceda, 1993), where the symmetric case is treated. 

In Section 2, we give a brief overview of the study of polynomial invariants 
oflinks, which was the main motivation of Jones' 1989 paper. We then discuss the 
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connection between spin models and association schemes in Section 3. In the 4"' 
Section we prove the main result characterizing the spin models arising from non­
symmetric conference digraphs. We conclude the paper with some remarks about 
the directions of this research. 

INVARIANTS OF KNOTS AND LINKS 

By a link we mean a finite disjoint union of simple closed curves (knots) in 3-
dimensional space. A knot is a link with one component. Links can be represented 
by projections onto the plane, called link diagrams, which may be viewed as 
plane graphs whose vertices are the under/over crossings. (Refer to (Rolfsen, 1976) 
for basic information about knots and links). 

The main problems of knot theory are: I) to decide whether a knot is really 
knotted, 2) decide when two knots are equivalent, and 3) "classify" all possible 
knots. We make the notion of equivalent links more precise below. 

Definition I. Two links are said to be equivalent if there exists an isotopic defor­
mation of the underlying 3-space which carries one link to the other. 

In other words, two links are equivalent if there exists an ambient isotopy. 

Theorem 1. (Reidemeister) Two diagrams represent equivalent links if and only if 
one can be transformed from the other by a finite sequence of Reidemeister moves 
and by planar isotopy. 

By planar isotopy, we mean motions of the diagram in the plane which preserve 
the graphical nature of the underlying universe. Reidemeister moves are explained 
below. 

Reidemeister's theorem is a basis for a combinatorial approach to knot theory. 
In particular, it allows the definition of an invariant of links as a mapping from the 
set of equivalence classes of diagrams to a set of values which is invariant under 
the Reidemeister moves. 

The three types ofReidcmeister moves are shown below. The Type Ill move 
(called a star-triangle move) is related to the quantum Yang-Baxter equations of 
physics. --- -- --·-·----1 

,X-~->< I 

~~)( X 
~ 

Ill X X --;--;::: 

Figure I. Type I, Type II, and Type III Reidemeister Moves. 
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An invariant is a quantity associated with a link or knot which depends only 
on the knot in 3-dimensions. For example, the number of components is an invari­
ant, although not particularly a strong one. Another simple invariant is the linking 
number, which gives an idea of how two k!1ots wrap around each other, and re­
quires a precise definition of orientation and signs. 

An n-valued invariant for oriented links is a map which associated to each 
oriented link an element of some ring n, for example, the complex field, or a ring of 
Laurent polynomials, in such a way that equivalent links have the same images in 
n. Classically, one of the most studied examples of link invariants is the Alexan­
der-Conway polynomial defined by J. W. Alexander in 1928. Traditionally, these 
polynomials were understood only in terms of standard algebraic topology, until 
the advent of Jones' work. 

After the discovery of the Jones polynomial, other polynomial invariants 
were soon discovered. The new invariants provide powerful methods for distin­
guishing inequivalent knots. See (Kauffman, 1988) for a survey. The most striking 
feature of these new invariants, aside from their oilen mysterious properties, is 
their (previously unheard of) connection with other branches of mathematics, as 
well as the natural sciences, in particular, to statistical mechanics in physics, and to 
molecular biologists studying DNA. 

SPIN MODELS AND ASSOCIATION SCHEMES 

We first give the definition of commutative association schemes. For more 
information on association schemes, see (Bannai-Ito, 1984). 

Definition 2. A commutative association scheme with d classes, denoted X = (X, 
{R j ) 0 ~ i ~ d), consists of a non empty finite set X together with subsets Rj ~ x X 
(i = 0, I, ... ,d) satisfYing the following axioms: 

I. Ro = {(x, x)lx EX), 

2. X x X =u1=o Rj , Rj nRj = 0 ifi ~ j, 

3. IR j = Rj' for some i' E {O, I, ... , dl, where 'R j = {(x.y)l(y. x) E Rj }, 

4. Fori.j. k E {O, I, ... ,d}, the integer pt-: =#{z E XI(x. z) E Rj and 
(z. y) E Rj } is constant whenever (x. y) E Rk , and 

5. pt = pt for all i.j. k E {O, I, ... , d}. 

In (Jaeger, 1992) the Bose-Mesner algebras generated by the adjacency ma­
trices of some special association schemes were studied and were discovered to be 
natural places to look for spin models. In particular, Jaeger proves the following 
result which has ·since been generalized by others. For insUlnce, see (Bannai-Bannai, 
\993). 
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Theorem 2. (Jaeger) Let (X W+, WJ be a symmetric spin model. Let :M be the 
algebra defined by W+ and the all I-matrix J with ordinary matrix multiplication. 
If :M is also closed under entry-wise Hadamard multiplication. then :M is the 
Bose-Mesner algebra of a self-dual association scheme. 

We now give the definition 'of a spin model. In this paper, we will use the 
generalized version of a spin model (formulated by Y. Watatani in (J<...awagoe­
Munemasa-Watatani, 1994) who dropped the symmetry condition upon the 
suggestion of Jones). 

Definition 3. Let X be a finite set with n elements and w + and w _ be complex­
valued functions on X x X. Let W+ and W_ be the matrices of size n x n defined by 
W+ == (w+(a,b»a,bE X and W_ == (w_(a,b»a,bE x. If the following conditions are 
satisfied, the configuration(X. w+, wJ is called a spin model: 

(I) I W+ 0 W_ = J, the matrix whose entries are all I, 

(2) W+ W_ = nl, where I is the identity matrix of size n, 

(3) IW+ Y ae = vnwJa.c)Yac for any a, c E X. 

In the above definition, Yae is the column vector whose x-entry is given by 
(Yae),t = (w+(a,x)w jx,c»,tEX' Hadamard or entry-wise multiplication is denoted by o. 

This definition generalizes Jones' original definition, where he requires that 
the matrices W+ and W_ are both symmetric. We refer to spin models satisfying this 
additional condition as symmetric spin models. 

Jones showed how a (symmetric) spin model may be used to obtain a link 
invariant. Watatani, Munemasa, and Kawagoe show similarly that the generalized 
version of a spin' model provides an invariant of oriented links. We describe the 
procedure briefly. 

Invariants of Oriented Links 

For any connected diagram L of an oriented link, we construct a signed graph 
as follows. Color the regions in black and white so that the unbounded region is 
white and adjacent regions have di fferent colors. The set of vertices of the graph is 
the set of black regions, and the set of edges is the set of crossings. An edge is 
incident with a vertex if and only if the corresponding crossing is on the boundary 
of a corresponding black region. We assign signs -t- and -, and an orientation to 
each edge according to the rules given in Fig. 2 and Fig. 3. 

If e is an edge, then we denote the sign of e by e(e), the initial vertex of e by ie' 
and the temlinal vertex by tc' Let u(L) be the number of black regions. If (W+ , WJ is a 
generalized spin model on X, then the partition function is defined by 
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where the product is taken over all edges e, and the sum is taken over all mappings 
cr from the set ofvertices to X. It is then shown in (Kawagoe-Munemasa-Watatani, 
1994) that the partition function above is invariant under Reidemeister moves of 
types II and III, as long as the diagrams are connected. Moreover, by a suitable 
normalization factor (which depends on the writer of L), we obtain an invariant of 
the oriented I ink L. 

-+ 

Figure 2. Sign of an Edge 

+ 

----- - - ----
Figure 3. Orietation of an Edge 

Classifying Spin Models Via Association Schemes 

As stated in the introduction, the current goal is to obtain a complete classi­
fication of spin models in terms of association schemes. The simplest case is that 
of the Potts model for the Jones polynomial, which corresponds to the !-class 
association scheme (i.e., the complete graphs). We describe this below. 

Example. (Potts model, ef(Jones, 1989) and (de Ia Harpe-Jones, 1993)) Let X 
be a set of cardinality n. Let the relations be given by R0 = {(x.x)lx EX} and 
R1 = {(x.y)lx ;e y and x,y E X}. Then (X, {R0, R1}) is a symmetric association 
scheme of class I. (Note that(.¥, R1) is the complete graph Kn>· The Bose-Mesner 
algebra J:\ is given by 
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WhereAO=JandAI =J-I. Let 

W+= toAo + tlA) (andhence)W_= to 14o+trIA) 

with to and t) satisfying 

tf+ t12+ D =0 (D2 = n) and to = _(t l ).,3. 

Then (X. W+, W_) is a spin model, called the Potts model. We note that the link 
invariant obtained from this model is a special value of the Jones polynomial for 
oriented links. 

Jones' work suggested that the sources of symmetric spin models seen to be 
the 2-class association schemes some special regularity conditions (e.g. self-dual 
and locally strongly regular). Contained in this class are the symmetric conference 
graphs, which include the family of Paley graphs. In the paper (Balmaceda, 1993), 
the author proves the following theorem: 

Theorem 3. Let X be a set of size n, and (X. W +. w.J be a symmetric spin model 
associated with a symmetric conference graph G with n ~ 5 which is not a Potts 
model. Then G is either the pentagon or the lattice graph L}(3) with nine vertices. 

By a symmetry conference graph, we mean a strongly regular graph with 

parameters (n, k, A., Jl) = (n, .!!::.!. n-5 • n-S). The natural extension of the above 
2 4 4 

result would be to consider the non-symmetric conference digraphs (i.e. non­
symmetric association schemes of class 2), and to determine if one obtains a 
generalized spin model from such schemes. 

In the next section, we give a direct proof of the following result: there are no 
such spin models, except when n = 3. For the case n = 3, Munemasa and Watatani 
havc previously found some examples (Kawagoe-Munemasa-Watatani, 1994). 

RESULTS AND PROOFS 

Let X = (X, {Ri}O SiS 2) be a non-symmetric 2-class association scheme. 
Then it is known that IXI = n = 4m + 3, for some integer m and that X is self-dual. 
Furthermore, if Ao, A), A2 are the adjacency matrices of the scheme, Ao = J and 
A~ = A2. We display the intersection matric B and character table P of such schemes 
below. P is the matrix with entries (P)iJ = (PP», 0 S i.j S 2. 

B= (;;~ ;;: ;;~) (~ : :+1) 
P?2 pl2 Pt2 2m+ I m m 
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p0( 10) p1 (0) p2(0) !!=..! n-1 
2 2 

(: 
-1 + V'iii -1-Vni 

) 
p ( po(IO) p1(0) p2(0)) 2 2 

-!-Viii -l+Vnt 
p0(10) p 1(0) p2(0) 

2 2 

Let W + = toA0 + t1A 1 + 1~2, for nonzero complex constants 10, t i' and 12. Following 
the observation in (Kawagoe-Munemasa-Watatani, 1994), we may assume that 
t0 = t1 1f1! t2; otherwise, we will obtain the (trivial) case of the Potts model. Hence we 
have, by the first condition in the definition of spin models: 

A useful ingredient in the proof is the result of Jaeger ([6], Prop. 5) which we state 
below: 

Lemma 4. Let W + and W _ be as above. Then (X, W +· W _) is a spin model if and 
on~v if the following hold: 

(I) PT= Vn"T- 1 , where T = (10 , r1, t2) 1 and T-1 = (10 1. 111, til>' 

(2) Elab = Oforeveryi,jE 11,2} witht;,;;o!~,andforeverypair(a.b)E 

Rr 

In the lemma above, the matrices E; are the primitive idempotents of the scheme 
chosen in a suitable ordering. 

We now state and prove the following result. 

Theorem 5. There are 110 spin models arising from the nonsymmetric confdrence 
digraphs, except the ones corresponding to the Polls models and the one on three 
vertices. 

Proof. Since the schemes in consideration have size n = 4m + 3, the smallest 
ones correspond to m = 0, i.e., on n = 3 vertices. And Munemasa and Watatani 
have found an example corresponding to this case. Moreover, we saw earlier that 
the Potts models arise (in a trivial way) from the series of graphs being considered 

We now show that form> 0, no other spin models can be found. It is enough 
to show that condition (2) of the lemma is not satisfied. The proof utilizes the 
algebraic and combinatorial properties of spin models and the corresponding 
properties of the association schemes involved. 

We now proceed with our computations. We assume that (a, b) E R1• Then, 
since t 1.' 1f1! 11, it is enough to show that E 1 Y11

b ;I! 0, the zero vector. 
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Since EI = *- ~J=o PI(j) Ai' we see that the vector EI Yab = 0 if and only if 
~2 -
£"j~O PI(j) AjYab = O. Let (Aj)x,y and (u)y be the (x. y)-entry of Aj and the y-entry 

of u, respectively, where U is a column vector of size n, and x. y E X. 
Then 

(AjYah)x = ~(Aj )x,iAab)y = ~Aj)x.y w + (a. y)w - (y. b). 
yEX yEX 

Sincew+(a,y) Ikwhen(a.y)E Rkandw_{v.b) = 1k"lwhen (V. b) E Rk,we 
have 

2 

(A)x.y(Yab)y = ~ Pjkl (x. a.b) Ikl;1 , 
k./=O -

where PjkJ (x, a, b) = # {YI(x.y) E Rj (a. y) E Rk • (y. b) E R/} : = PjlcJ . 

Suppose that x E X satisfies the following: (x, a) E R2, (x. b) E R2, with 
(a, b) E R I . We now show that the equation EI Yab = 0 is not satisfied for the 
above choice of x. For this we need to compute all the values of the intersection 
numbers Pjkl' 0 S },k.! S 2. 

Case} = 0: It is straightforward to compute the following values: PIOO = PIOI 

= Poo2 = PIOI = POll = P020 = P021= P022 = O. The only nonzero value is POl2 = I. 

Case} = I: Again we can compute directly the following values: Ploo = 
PIOI = PI02 = PliO = PI20 = O. We now compute the rest of the values by 
analyzing the parameters of non symmetric conference digraphs. 

get: 

Thus. 

Suppose Pili = r. Since P11 = #{YI(x.y) E R I' (v.b) E R I} for (x, b)E R2, we 

2 

m + I = ~ P[ijPIOI + Pili + PilI. 
i=O 

m + I = 0 + r + PI21 i.e., PI2I = m - r + I. 

On the other hand, we also have 

Thus 

P11=#{YI(x,y)E RI,{v,a)E RI } for(x.a)E R2. 

=#(yl(x,y)E RI,(Y,a)E R2} for(x,a)E R2. 

2 

P11 = ~ P\2i = PI20 + PI2l + P122. 
;=0 
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Or, 

Finally, 

So, 

Or, 

m+I=O+m-r+I+PI22, i.e·,PI22=r .. 

~2:: # (yI(x. y) E RI• (y. b) E R2} where (x. b) E R2. 

2 

m = L Pli2 = PI02 + PI12 + P122. 
;=0 

m = 0 + PI12 + PI22 Hence, PI12 = m - PI22 = m - r. 

Summing up, we have: Pili = r, PI12 = m - r, PI21 = m - r + I. PI22 = r, and 

PIOO = PI02 = PIOI = PI20 = O. 

Case j = 2. As before, it is straightforward to compute the following values: 

P200 = P202 = P220 = O. Similarly, P201 = P210 = I. We still need to compute: P211' 

P212' P221' and P222· 

Suppose 211 = s. Then 

So, 

Hence, 

Now 

So, 

Thus, 

Similarly, 

So, 

P~I = # (Y1(x. y) E R2, (y. b) E R I } where (x. b) E R2. 

2 

m=L P2i1=P201+ P211+ P221= l+s+P221. 
;-0 

P221 = m -s - I. 

~I = # (Y1(x. y) E R2, (y. a) E R I } for (x. a) E R2 . 
= # (Y1(x. y) E R2, (a.y) E R2} for (x. a) E R2. 

2 

m = p~ I = L P22i = P220 + P221 + P222 = 0 + (m - s - I) + P222. 
;=0 

when (x. a) E R2 

2 

m = L P2t2 = P202 + P212 + P222 = 0 + P212 + (s + 1). 
;=0 

. 
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Hence, 

Finally, 

So, 2 

m= L Pill =POII+Pl\I+P21l=O+r+s. 
;=0 

Hence, 
m=s-r. 

And thus: 
P211 = m - r, P212 = r - I, P221 = r - I, P222 = m - r. 

To complete the proof, we now show that the second condition of the lemma 
does not hold. Recall that 

2 2 

(EI Yab)x = 0 ~ L Pi ()), L Pjkltkt;1 = 0 
j=O k.I=O 

Then, substituting the values obtained for pijk, 

~2 - ~2 -I _ - -I 
~j=o Pi (/), ~k,I=O Pjkltkty - Pi (O)t l t2· 

+ Pi(l) [rtltj;-I + (m - r)/h·;-1 + (m - r+ 1)/2/i;-1 + rt2ti;-l] 

+ Pi (2)[/0/pl + 11/01 + (m-r)/l/i;-I+(r-l)tl/i~I+(r-I)/2tl~1 

+ (m - r + 1)/2/j;-l]. 

Since to = II' 11' = 12, and 12 = II" and using the values of the Pi (j) obtained 
from the character table P of the scheme, the right-hand side of the above equation 
simplifies to the following: 

2m + I) + I' r-: [r I + (m - r) + (m - r + 1) r I ] 
- -vm ..:l ...:l. 

2 12 II 

+ -I + Viii [.!.l + 1 + (m - r) .!.l + (r - 1) + (r - I) + (m - r + I) .!J 
. 2 12..• 12 . 1 I 

Collectmg terms and slmplIfymg we obtam 
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11 11 
Since tl + t2 ~ 0, the factorT + T - 2will never equal zero. Moreover, the second 

2 2 
factor is clearly nonzero. Hence we have shown that (E I Yab)x ~ O. From the lemma, 
we conclude that no spin model arises from this class of association schemes. 

Finally. we note that for the second possible ordering of the primitive 
idempotents Ei , which results in reversing the second and third rows of the character 
table P, a similar argument yields the same conclusion as before. This completes 
the proof. 0 

CONCLUDING REMARKS 

The relation between knot theory and statistical mechanics and the role played 
by association schemes are not yet very well understood, but the evidence for the 
connection is substantial. Indeed a real understanding will require the efforts of 
both mathematicians and physicists, working in diverse areas such as topology, 
quantum field theory, combinatories and the geometry of 3-manifolds. 

Through the years, many mathematical theories and objects have found 
relevance and applications in otherwise unrelated areas. The new knot theory, for 
instance, has been used by molecular biologists in enzyme recognition and the 
study of DNA, and by chemists studying polymer theory. It is hoped that this 
article serves as introduction and encouragement for interdisciplinary research. 
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