Trailblazers in Science Lecture Series by the National Scientists October 17, 2017, Naval, Biliran

Soil properties as predictor for *suppressive* or *conducive* soils to PANAMA DISEASE

Ian A. Navarrete, PhD

Department of Environmental Science Ateneo de Manila University Quezon City, Philippines navarrete@ateneo.edu

BY LUISA CHESHIRE

Tuesday 12th January 2016, 23:54 Hong Kong

Philippines hit by Panama disease

Panama disease and El Niño are wiping out banana plantations in the Philippines

he Philippines' billion-dollar banana industry is losing plantations to disease and extreme weather, according to trade figures.

The Pilipino Banana Growers and Exporters Association (PBGEA) reported a loss of over 2,000ha in Mindanao during 2015, which represents 5.1 per cent of total banana acreage in the key growing region.

PBGEA executive director Stephen Antig told the SunStar newspaper that banana growers have suffered losses from Panama disease, as well as from the devastating effects of the El Niño weather pattern.

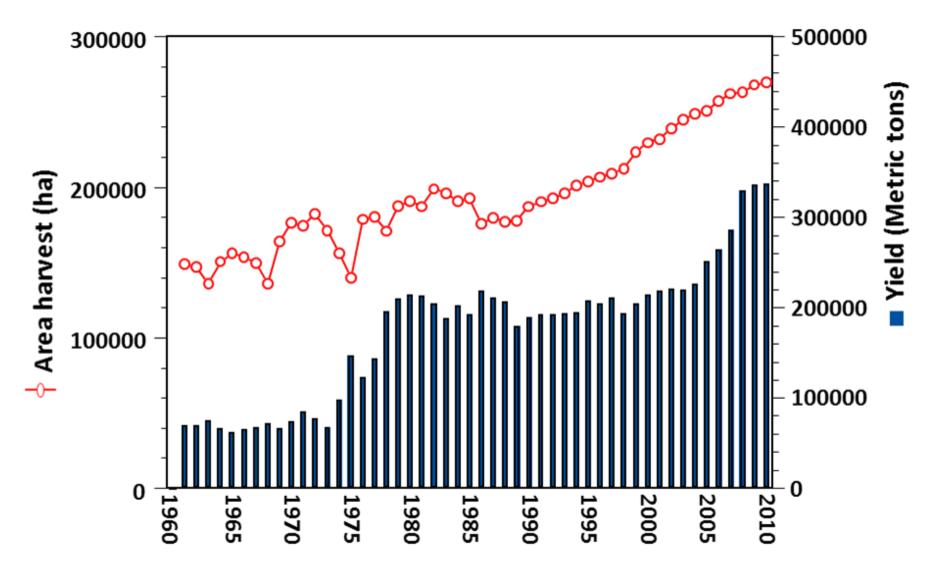
Mindanao's banana acreage fell from 44,479.65ha in 2014 to 42,316.41ha in 2015 as a result, he said. Production volumes also dropped between January and September 2015 to 85,324,491 boxes, compared with 90,147,480 boxes for the prior year period.

Davao del Norte was the most affected province followed by Compostela Valley, Davao City, Davao del Sur

Business Mirror top news v world v business v sports v opinion v

Disease could wipe out cavendish bananas–PBGEA

By Mary Grace Padin - May 3, 2016


The infestation of Panama disease or fusarium wilt in banana plantations, if not immediately controlled, could wipe out local cavendish bananas, banana growers and exporters said on Tuesday.

Pilipino Banana Growers and Exporters Association (PBGEA) Executive Director Stephen Antig said the disease keeps growers and exporters on their toes.

"The industry is definitely worried that the cavendish variety might become obsolete," Antig told the BusinessMirror in an interview.

Citing data from the Department of Agriculture (DA), Antig said about 15,500 hectares of banana plantations, mostly in Region 11, have already been affected by the disease.

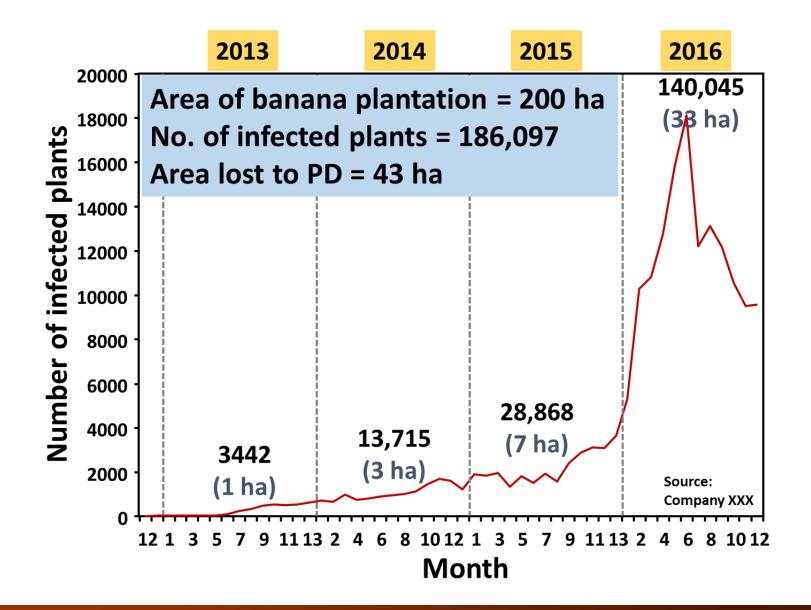
Area harvested & yield of banana in the Philippines

FAO Stat 2016

Bananagedon (Panama disease)

Thousands of hectares of plantations have been wiped out in China, Indonesia, Malaysia and in the Philippines.

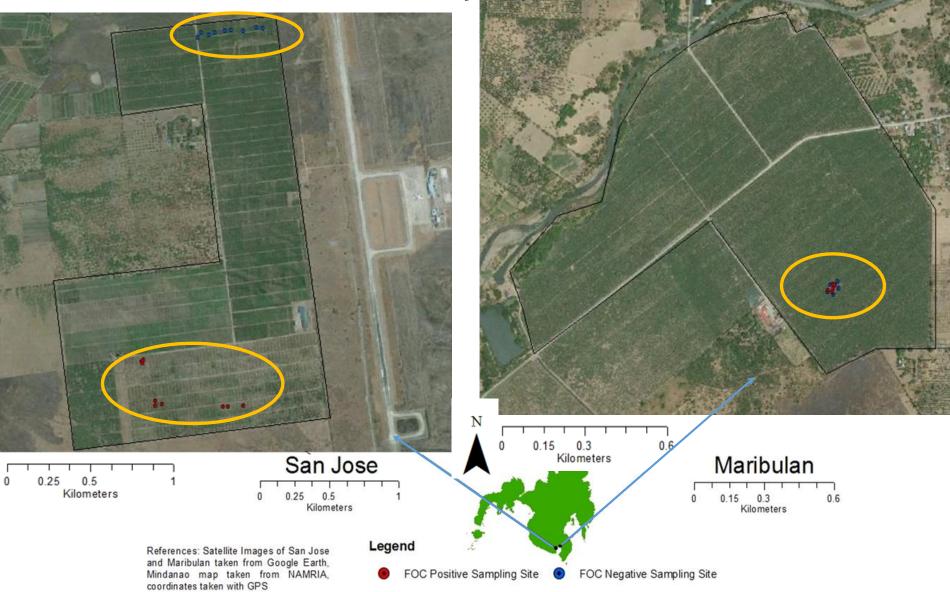
www.fusariumwilt.org


Bananagedon (Panama disease)

- soil-borne fungus (Fusarium oxysporum f.sp. cubense)
 - Fungal spores can survive in soils for several decades [1], thus, susceptible banana varieties of the disease cannot be planted successfully for up to 30 years [2].

[1] Ploetz & Correll, 1988; [2] Stover, 1993

Panama Disease (PD) infestation


Research gaps...

- No known method is available to control and/or eradicate PD.
- PD spread is high (conducive) in other soils, while others are not (suppressive).
- Soil condition is important in the course of its infection.
- Knowledge of soil characteristics is fundamental to *planning* suitable management strategies for the control of PD.

Working hypotheses (WH)...

WH 1. Suppressive and conducive soils to PD have different soil physical and chemical propertiesWH2. High OM and total N in soils is conducive to PD infestation

Study sites


Site 1 (Maribulan, Alabel General Santos)

(-) Suppressive

(+) Conducive

Site 2 (San Jose, Alabel General Santos)

(-) Suppressive

(+) Conducive

Suppressive & conducive soils to PD have different physical properties

	Depth	Sand	Silt	Clay	Soil texture				
Sample	(cm)	(%)	(%)	(%)	class*				
Maribulan, General Santos									
Supressive (n=5)	0-10	44 (5)	28 (3)	28 (4)	Clay loam				
Conducive (n=5)	0-10	48 (3)	26 (1)	26 (3)	Sandy clay loam				
Supressive (n=5)	10-30	41 (5)	28 (2)	31 (3)	Clay loam				
Conducive (n=5)	10-30	44 (4)	26 (2)	30 (3)	Clay loam				
Supressive (n=5)	30-50	39 (3) ^b	27 (1)ª	34 (2)	Clay loam				
Conducive (n=5)	30-50	44 (4) ^a	23 (2) ^b	33 (2)	Clay loam				
San Jose, General Santos									
Suppressive (n=9)	0-10	65 (6) ⁶	22 (8)	12 (7)	Sandy loam				
Conducive (n=9)	0-10	70 (3)ª	19 (4)	11 (3)	Sandy loam				
Suppressive (n=9)	10-30	64 (5) ^b	22 (7)ª	13 (6)	Sandy loam				
Conducive (n=9)	10-30	73 (4)ª	16 (3) ^b	11 (3)	Sandy loam				
Suppressive (n=9)	30-50	63 (9) ^b	24 (9)ª	13 (4)	Sandy loam				
Conducive (n=9)	30-50	72 (4)ª	15 (3) ^b	13 (2)	Sandy loam				

Different letter superscripts on same properties and depth indicate significant differences at p <0.05 Values in parentheses are standard deviations

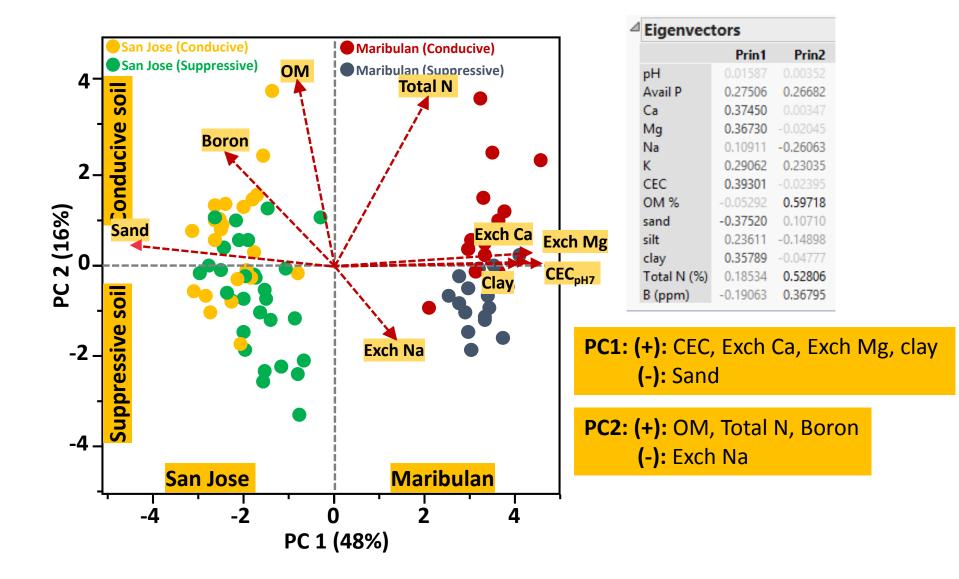
*USDA classification

WH 1

WH 1 Suppressive & conducive soils to PD have different chemical properties

					Exchangeable bases (cmol/kg)				
Sample	Depth	рН	ОМ	Avail P	Ca	Mg	Na	К	CECpH 7
	(cm)	(water)	(%)	(mg/kg)					(cmol/kg)
			Marib	ulan, Gene	ral Santos				
Supressive (<i>n=5</i>)	0-10	6.4 (0.2)	1.2 (0.3) ^b	11.4 (7.5) ^b	26.1 (5.2) ^a	7.4 (0.4) ^a	1.0 (0.1) ^a	3.7 (1.6) ^b	18.1 (1.2)
Conducive (<i>n=5</i>)	0-10	6.2 (0.2)	1.8 (0.4) ^a	40.2 (14.3) ^a	18.9 (1.3) ^b	5.8 (1.0) ^b	0.6 (0.2) ^b	9.6 (2.7) ^a	18.1 (0.9)
Supressive (<i>n=5</i>)	10-30	6.5 (0.3)ª	1.1 (0.3)	12.6 (11.9) ^b	24.4 (2.4) ^a	7.4 (0.4) ^a	1.7 (1.7)	2.6 (0.8) ^b	17.2 (1.1)
Conducive (<i>n=5</i>)	10-30	6.0 (0.3) ^b	1.4 (0.2)	31.0 (4.4) ª	18.9 (1.3) ^b	6.7 (0.3) ^b	0.6 (0.1)	4.8 (0.9) ^a	16.5 (1.2)
Supressive (<i>n=5</i>)	30-50	6.3 (0.3)	1.0 (0.1)	13.6 (6.1)	23.7 (2.2) ^a	7.3 (0.6)	0.9 (0.1)	2.0 (0.4)	17.2 (1.3)
Conducive (<i>n=5</i>)	30-50	6.1 (0.1)	1.2 (0.3)	26.0 (6.1)	19.9 (2.0) ^b	7.3 (0.4)	1.3 (1.1)	2.6 (0.5)	17.8 (1.7)
San Jose, General Santos									
Suppressive (<i>n=9</i>)	0-10	6.7 (0.5)	1.3 (0.5) ^b	7.1 (3.8)	5.4 (2.2)	1.1 (0.6)	0.6 (0.2)	0.7 (0.7)	4.7 (1.5)
Conducive (<i>n=9</i>)	0-10	6.3 (0.5)	2.4 (0.8) ^a	10.7 (7.4)	7.3 (2.4)	2.8 (2.5)	0.4 (0.2)	0.9 (0.5)	3.5 (1.2)
Suppressive (<i>n=9</i>)	10-30	6.2 (0.7)	1.2 (0.3) ^b	4.7 (1.2)	4.7 (1.7)	1.3 (0.6)	0.8 (0.3) ^a	0.4 (0.3)	5.1 (1.2)ª
Conducive (<i>n=9</i>)	10-30	6.1 (0.5)	1.7 (0.5) ^a	6.1 (2.7)	5.4 (1.2)	1.5 (0.4)	0.5 (0.2) ^b	0.7 (0.4)	2.9 (1.5) ^b
Suppressive (<i>n=9</i>)	30-50	6.2 (0.6)	1.0 (0.4) ^b	3.8 (1.6)	4.5 (2.2)	1.3 (0.4)	0.9 (0.5)	0.3 (0.1)	4.4 (0.7) ^ª
Conducive (<i>n=9</i>)	30-50	6.0 (0.4)	1.4 (0.3) ^a	3.7 (1.2)	4.6 (0.8)	1.4 (0.4)	0.9 (1.2)	0.5 (0.3)	2.9 (1.2) ^b

Different letter superscripts on same properties and depth indicate significant differences at p < 0.05Values in parentheses are standard deviations


General trends

	Exchangeable bases (cmol/k					ol/kg)					
Sample	e	Depth	рН	ОМ	Avail P		Ca	Mg	Na	К	CECpH 7
		(cm)	(water)	(%)	(mg/kg)						(cmol/kg)
Maribulan, General Santos											
Supress	ive (<i>n=5</i>)	0-10) ^a 1.0 (0.1) ^a		
Conduci	ive (n=5)	0-10	6 2 (0 2)	1 Q (0 /1)ª	10 2 (11 3)ª	12	0/1 3\ ^b	5 8 (1 0)	1 ^p 0 6 10 31 ^p	9 6 /2 7)ª	<u>181</u> (0.9)
Supres Condu	Samp	les	рН	OM	Total	Ν	Ava	il P	K	Na	(1.1) (1.2)
Supres											(1.3)
Condu	Condu	cive	\checkmark	\uparrow	\uparrow		1		\uparrow	\downarrow	(1.7)
Suppre Condu	Suppres	ssive	↑	\checkmark	\checkmark		1	•	\checkmark	↑	(1.5) (1.2)
Suppres	ssive (<i>n=9</i>)	10-30	ъ.2 (U.7)	1.2 (0.3)	4./ (1.2)	4.	/ (1./)	1.3 (U.b) ບ.ຮ (ບ.ຮ)	U.4 (U.3)	5.1 (1.2)ª
Conduci	ive (<i>n=9</i>)	10-30	6.1 (0.5)	1.7 (0.5) ^a	6.1 (2.7)	5.4	4 (1.2)	1.5 (0.4) 0.5 (0.2) ^b	0.7 (0.4)	2.9 (1.5) ^b
Suppres	ssive (<i>n=9</i>)	30-50	6.2 (0.6)	1.0 (0.4) ^b	3.8 (1.6)	4.	5 (2.2)	1.3 (0.4) 0.9 (0.5)	0.3 (0.1)	4.4 (0.7) ^a
Conduci	ive (<i>n=9</i>)	30-50	6.0 (0.4)	1.4 (0.3) ^a	3.7 (1.2)	4.	6 (0.8)	1.4 (0.4) 0.9 (1.2)	0.5 (0.3)	2.9 (1.2) ^b

Different letter superscripts on same properties and depth indicate significant differences at p < 0.05Values in parentheses are standard deviations

Principal components (PC) extracted from the principal component analysis (PCA) of all selected properties

WH 2

Conclusion.....

Working hypothesis	Yes/No	Remarks
WH 1: Suppressive & conducive soils have different soil physical & chemical properties	Yes	Suppressive soils: Exch Na Conducive soils: OM, Total N, Boron
WH2 : High OM and total N in soil is conducive to PD infestation	Yes	Important soil properties: OM , Total N, Boron

Soil properties can be used as proxies in predicting suppressive and conducive soils to PD.

Future directions...

 Microbial communities between rhizosphere and non-rhizosphere soils and between suppressive and conducive soils.

- soil metagenomics studies

2. Role of sodium in the suppression of PD and its impact to soil fertility

- field and laboratory experiments (need collaborator from Mindanao)

May contribute to the understanding of PD and its control